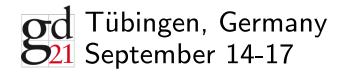
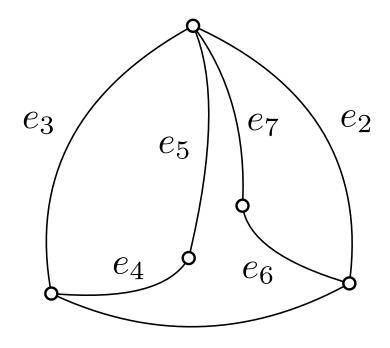
Planar Straight-line Realizations of 2-Trees with Prescribed Edge Lengths

Carlos Alegría, Manuel Borrazzo, Giordano Da Lozzo Giuseppe Di Battista, Fabrizio Frati, and Maurizio Patrignani

> Roma Tre University Rome, Italy



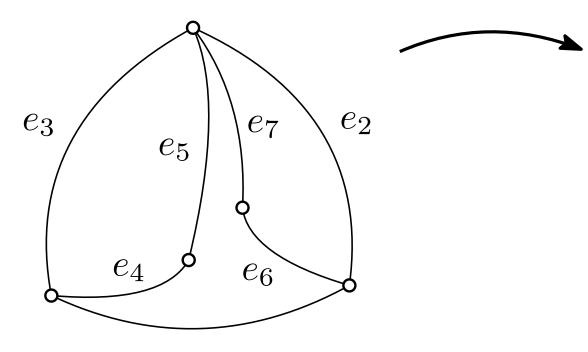
$$G = (V, E, \lambda)$$
$$\lambda : E \to \mathbb{R}^+$$



$$e_1$$

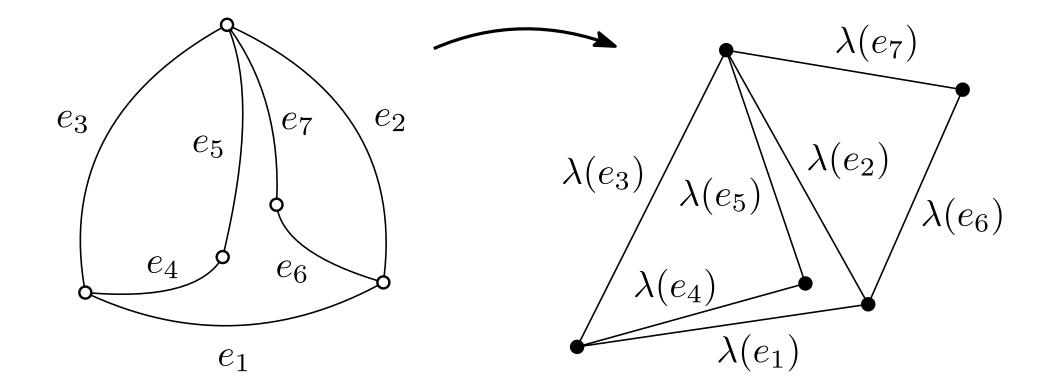
$$G = (V, E, \lambda)$$
$$\lambda : E \to \mathbb{R}^+$$

Γ



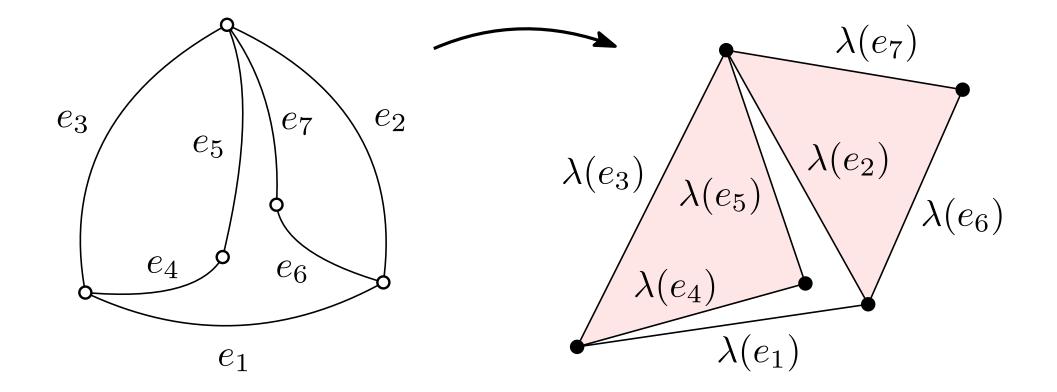
$$e_1$$

$$G = (V, E, \lambda)$$
$$\lambda : E \to \mathbb{R}^+$$



Γ

$$G = (V, E, \lambda)$$
$$\lambda : E \to \mathbb{R}^+$$



Γ

$$G = (V, E, \lambda)$$
$$\lambda : E \to \mathbb{R}^+$$

[Eades & Wormald, 1990]

• Introduced the problem

[Eades & Wormald, 1990]

- Introduced the problem
- NP-hard for:
 - Triconnected planar graphs
 - Biconnected planar graphs with unit lengths

[Eades & Wormald, 1990]

- Introduced the problem
- NP-hard for:
 - Triconnected planar graphs
 - Biconnected planar graphs with unit lengths

[Cabello, Demaine, and Rote, 2007]

NP-hard for triconnected planar graphs with unit lengths

[Eades & Wormald, 1990]

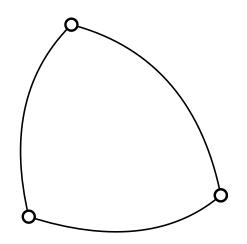
- Introduced the problem
- NP-hard for:
 - Triconnected planar graphs
 - Biconnected planar graphs with unit lengths

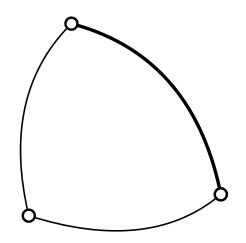
[Cabello, Demaine, and Rote, 2007]

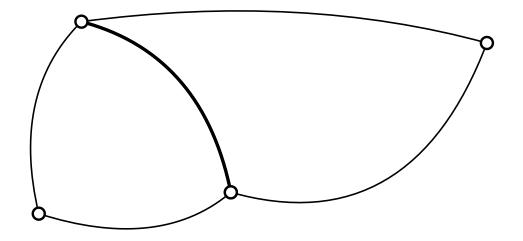
NP-hard for triconnected planar graphs with unit lengths

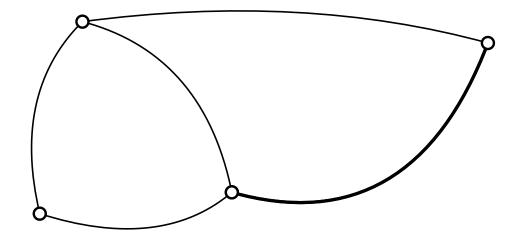
[Abel et al., 2016]

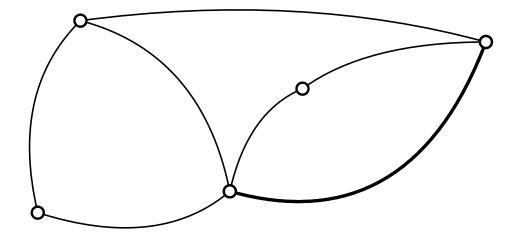
Recognizing matchstick graphs is $\exists \mathbb{R}$ -complete

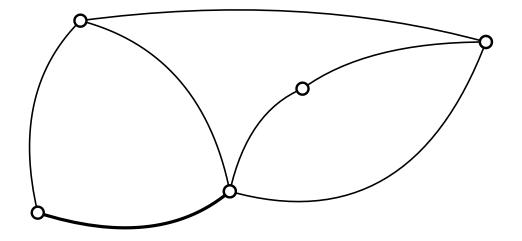


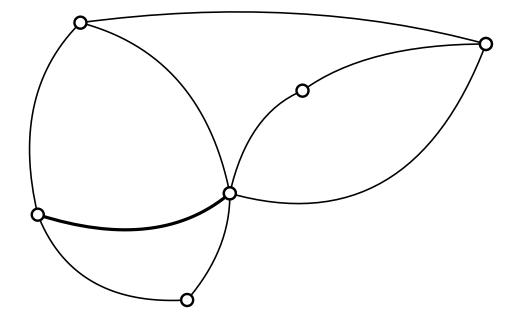


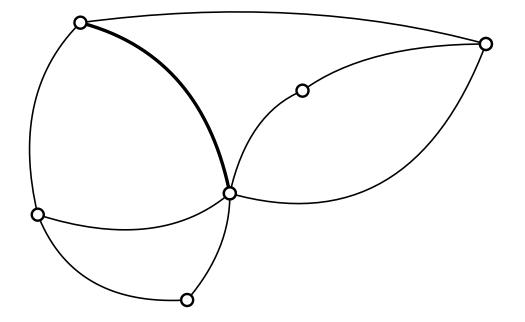


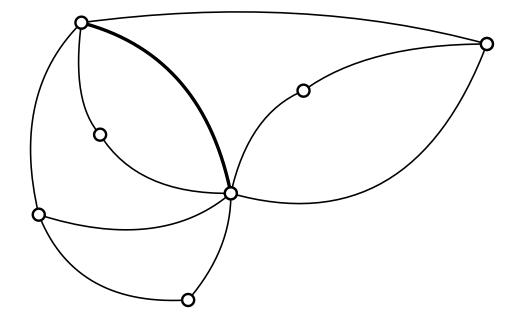


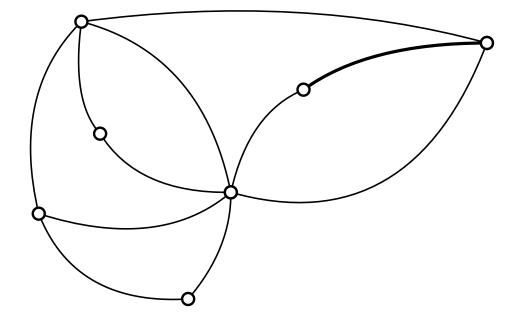


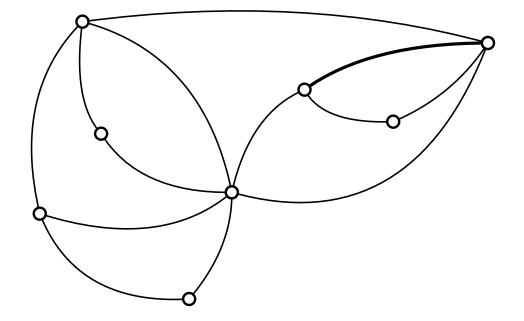


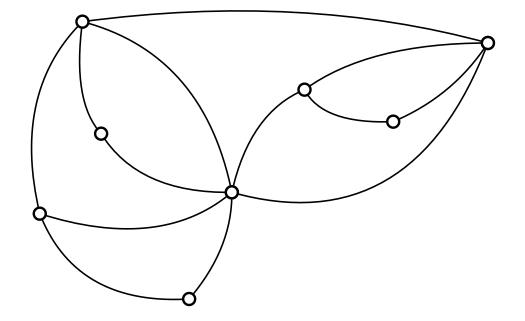


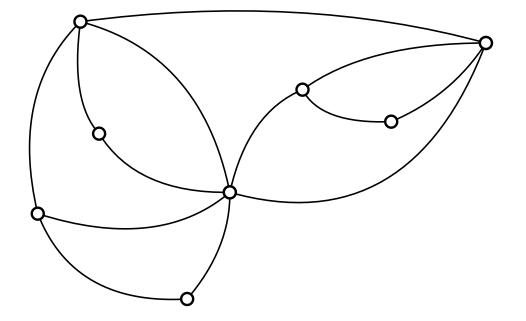




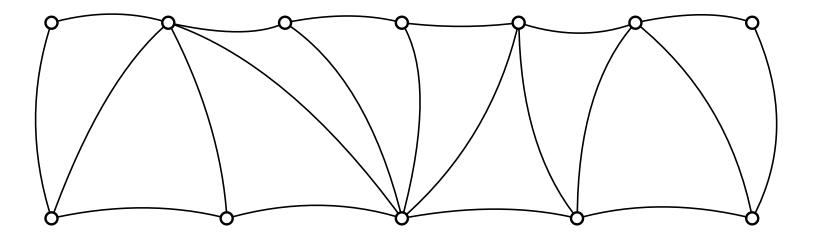


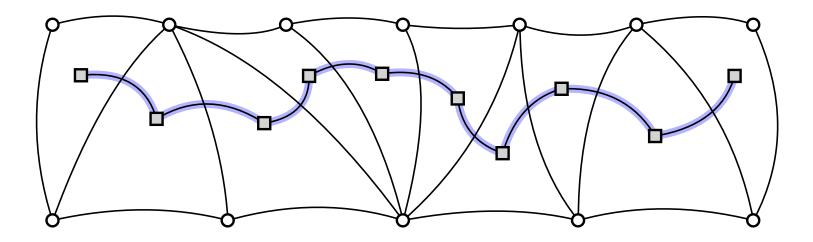




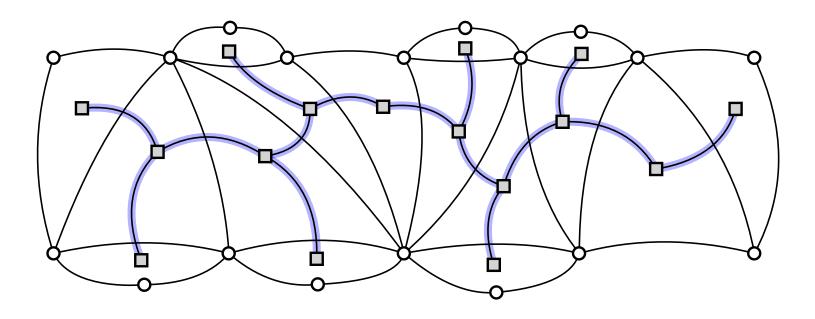


Maximal planar graphs with no K_4 minors





Outerpath



Outerpillar

• Fixed embedding:

- Fixed embedding:
 - Linear-time algorithm^{*}

*NP-hard for general graphs.

- Fixed embedding:
 - Linear-time algorithm^{*}
- Variable embedding:

*NP-hard for general graphs.

- Fixed embedding:
 - Linear-time algorithm^{*}
- Variable embedding:
 - $\bullet~$ NP-hard if the number of distinct lengths is at least 4

*NP-hard for general graphs.

- Fixed embedding:
 - Linear-time algorithm*
- Variable embedding:
 - $\bullet~$ NP-hard if the number of distinct lengths is at least 4
 - Linear-time algorithm if the number of distinct lengths is $1 \mbox{ or } 2^{**}$

*NP-hard for general graphs. **NP-hard for general graphs with 1 length.

- Fixed embedding:
 - Linear-time algorithm*
- Variable embedding:
 - \bullet NP-hard if the number of distinct lengths is at least 4
 - Linear-time algorithm if the number of distinct lengths is $1 \mbox{ or } 2^{**}$
 - Polinomial-time algorithm for 2-trees whose longest path has bounded length

*NP-hard for general graphs. **NP-hard for general graphs with 1 length.

- Fixed embedding:
 - Linear-time algorithm*
- Variable embedding:
 - \bullet NP-hard if the number of distinct lengths is at least 4
 - Linear-time algorithm if the number of distinct lengths is $1 \mbox{ or } 2^{**}$
 - Polinomial-time algorithm for 2-trees whose longest path has bounded length
 - Linear-time algorithm for outerpaths

*NP-hard for general graphs. **NP-hard for general graphs with 1 length.

Results

- Fixed embedding:
 - Linear-time algorithm*
- Variable embedding:
 - \bullet NP-hard if the number of distinct lengths is at least 4
 - Linear-time algorithm if the number of distinct lengths is $1 \mbox{ or } 2^{**}$
 - Polinomial-time algorithm for 2-trees whose longest path has bounded length
 - Linear-time algorithm for outerpaths
 - Cubic-time algorithm for outerpillars

*NP-hard for general graphs. **NP-hard for general graphs with 1 length.

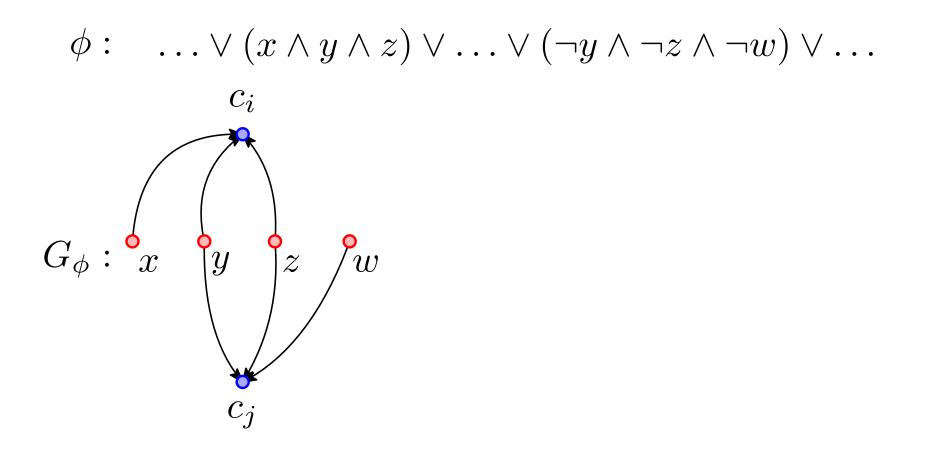
Results

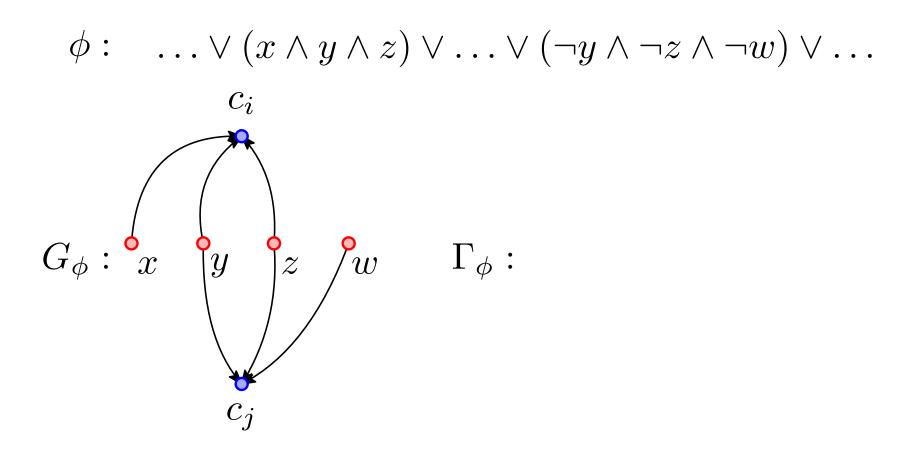
- Fixed embedding:
 - Linear-time algorithm*
- Variable embedding:
- NP-hard if the number of distinct lengths is at least 4
 - Linear-time algorithm if the number of distinct lengths is 1 or 2^{**}
 - Polinomial-time algorithm for 2-trees whose longest path has bounded length
 - Linear-time algorithm for outerpaths
 - Cubic-time algorithm for outerpillars

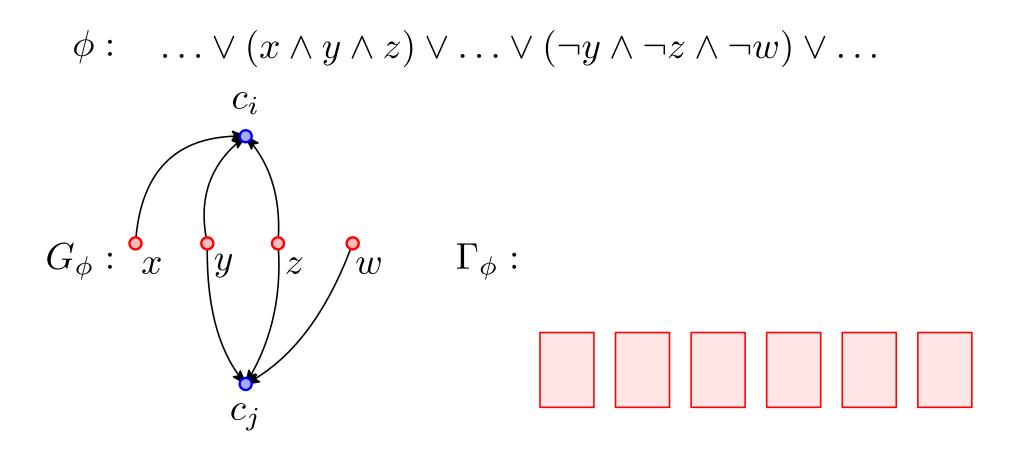
*NP-hard for general graphs. **NP-hard for general graphs with 1 length.

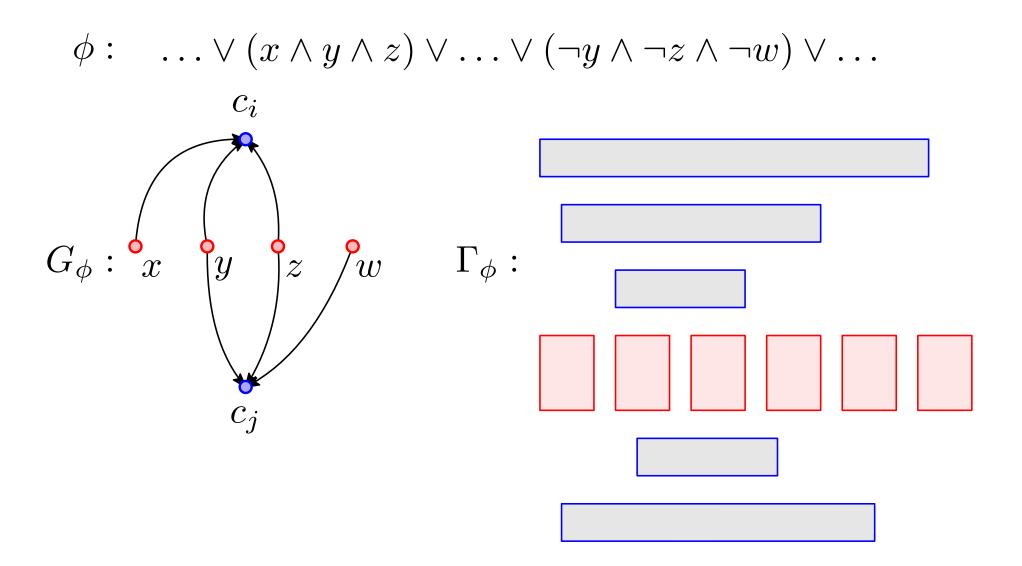
NP-hardness

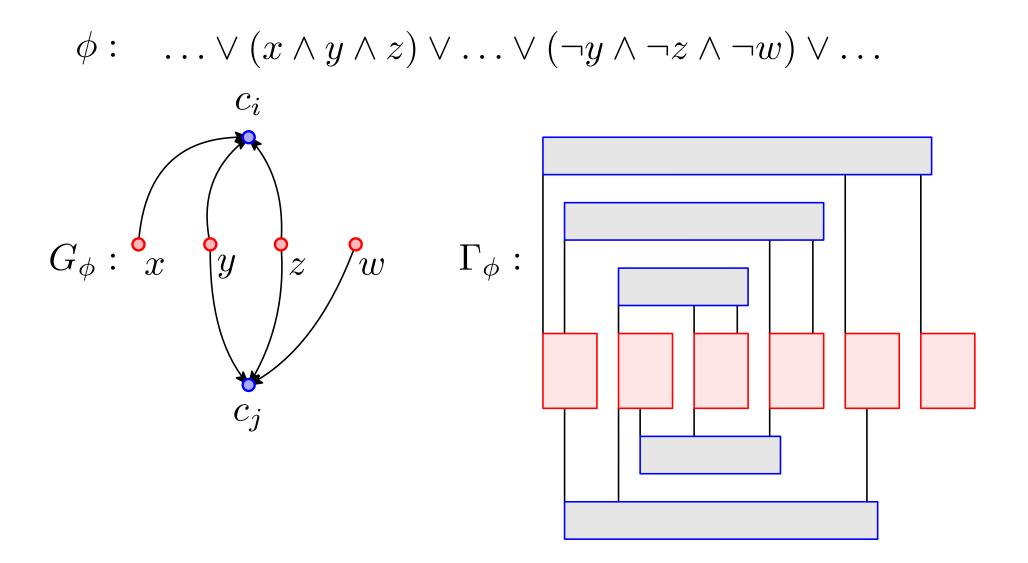
 $\phi: \ldots \lor (x \land y \land z) \lor \ldots \lor (\neg y \land \neg z \land \neg w) \lor \ldots$

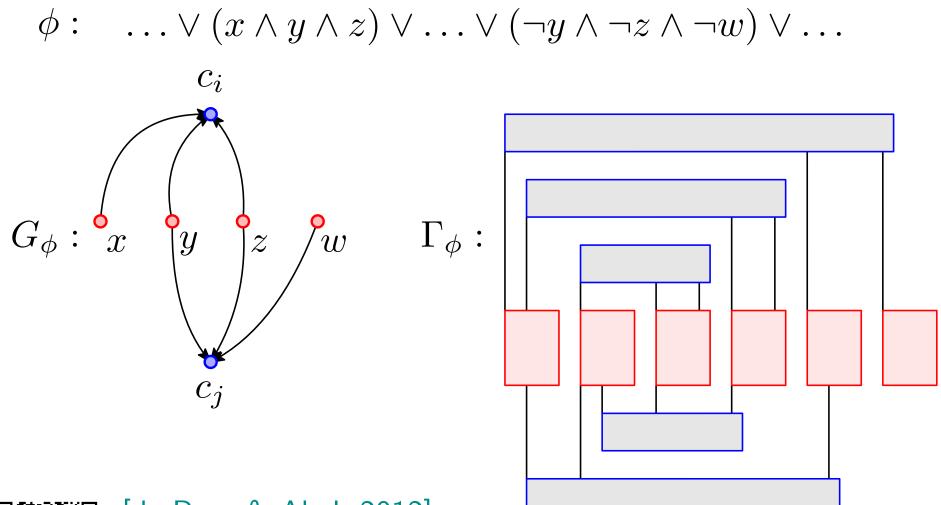






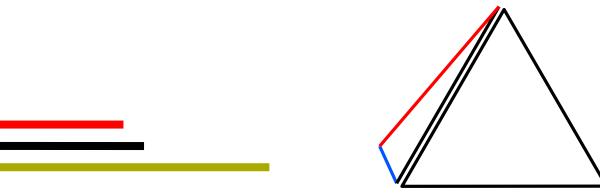


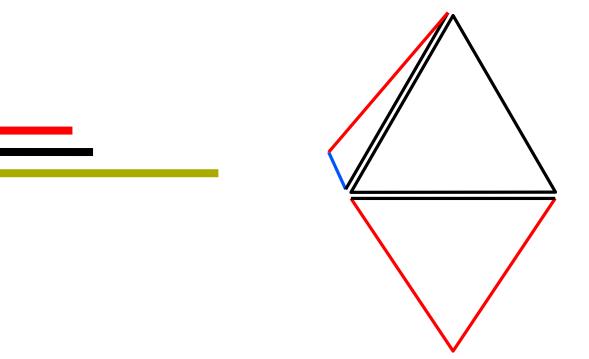


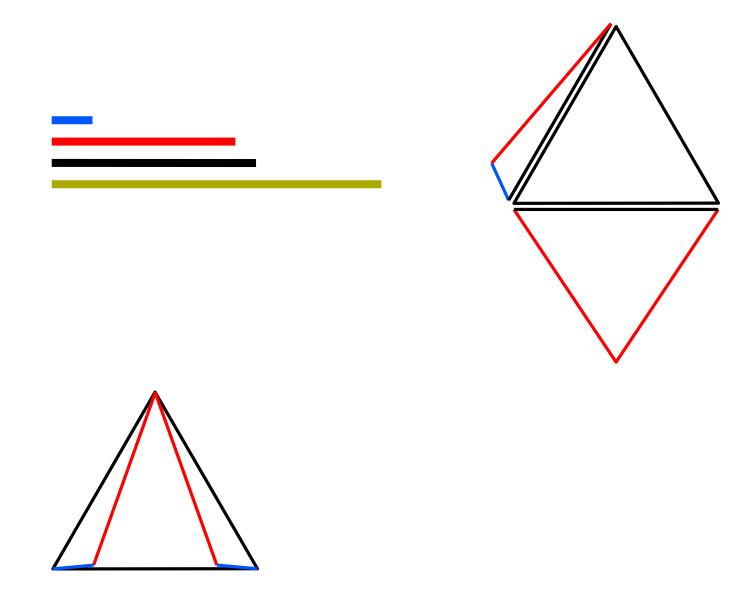


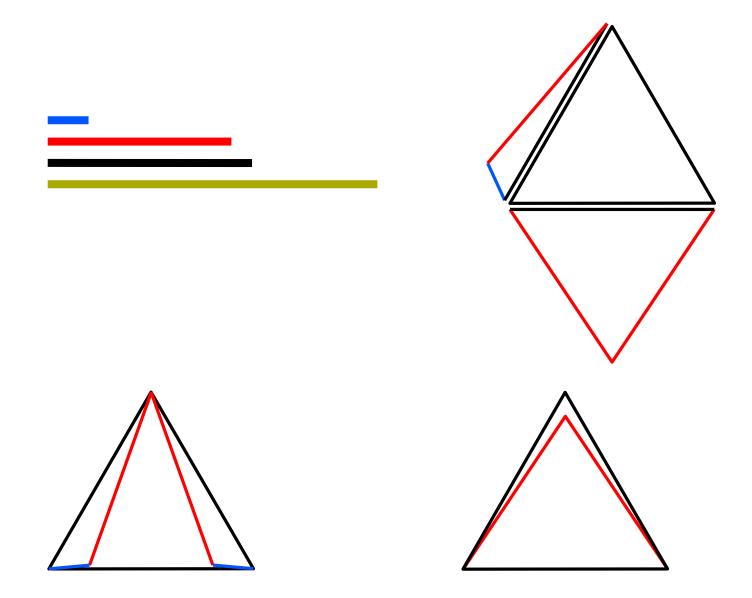
[de Berg & Abel, 2012]

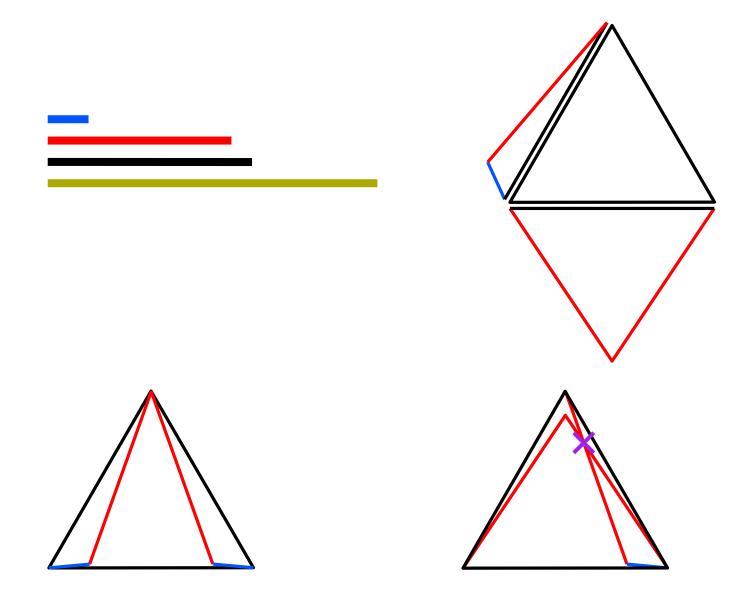
The problem is NP-complete, even with a Monotone Rectilinear Representation

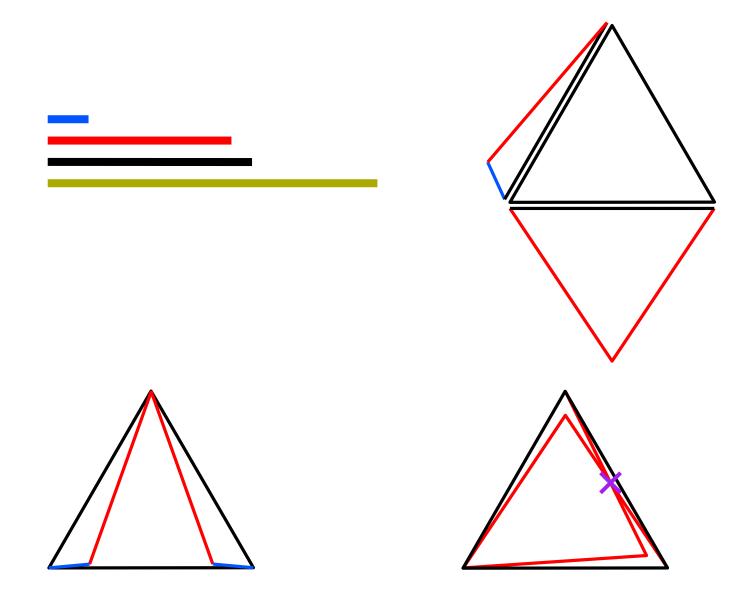


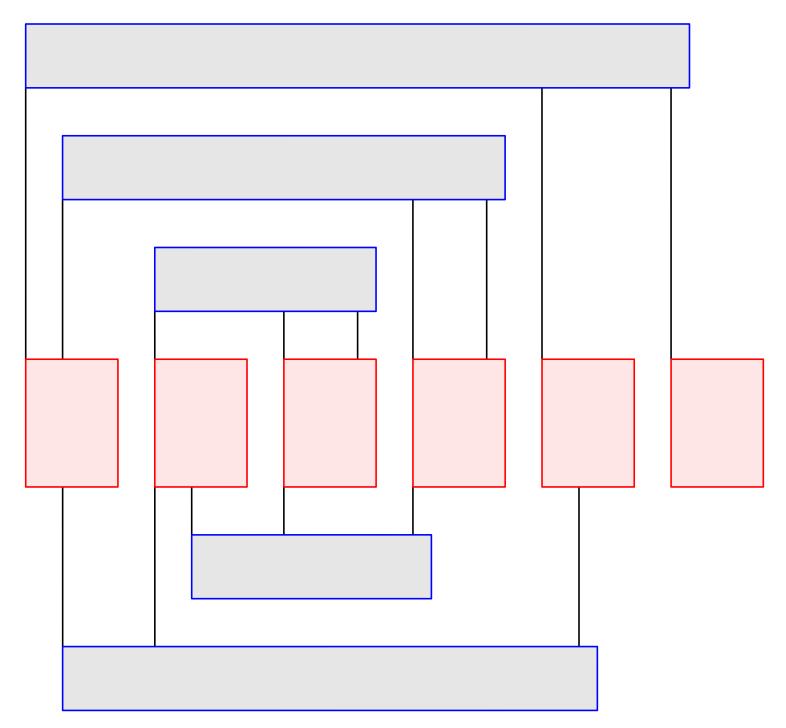


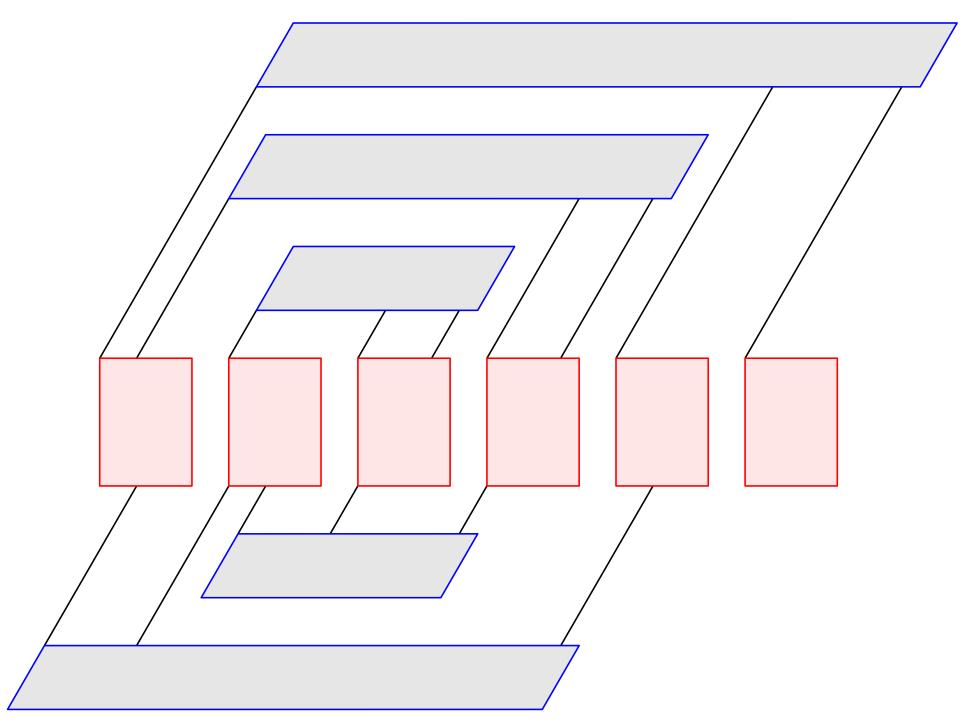


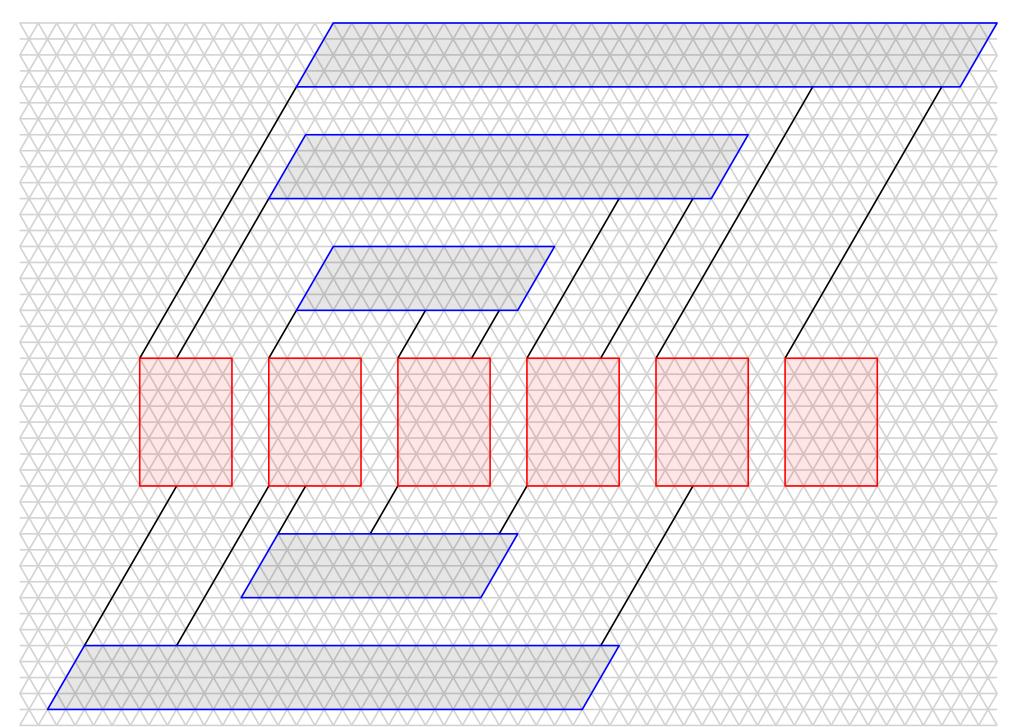


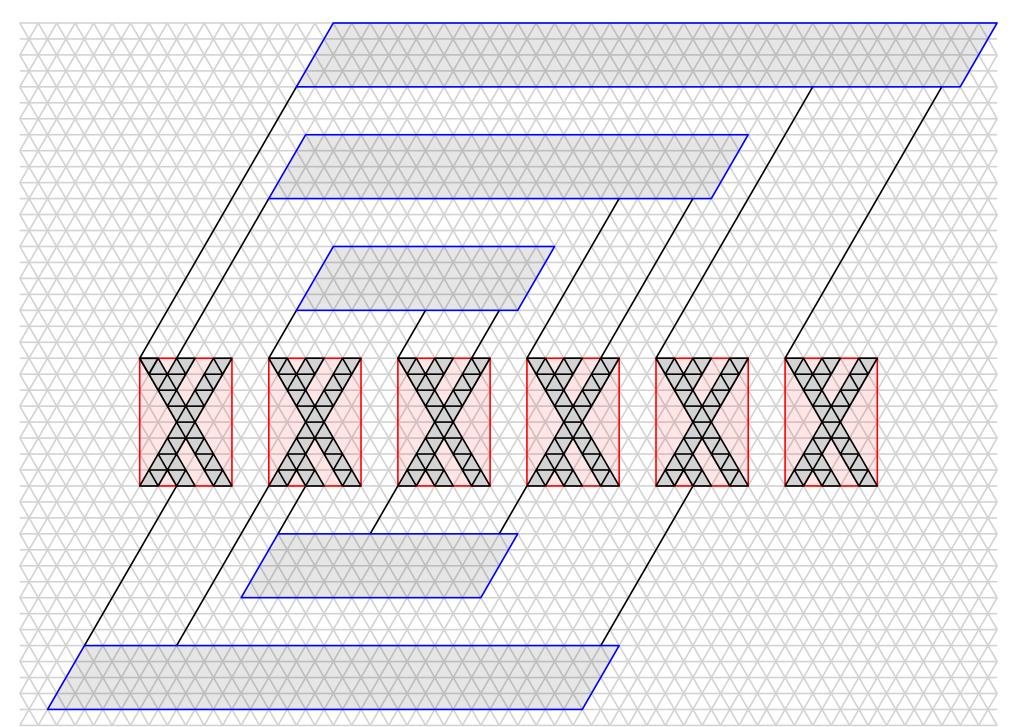


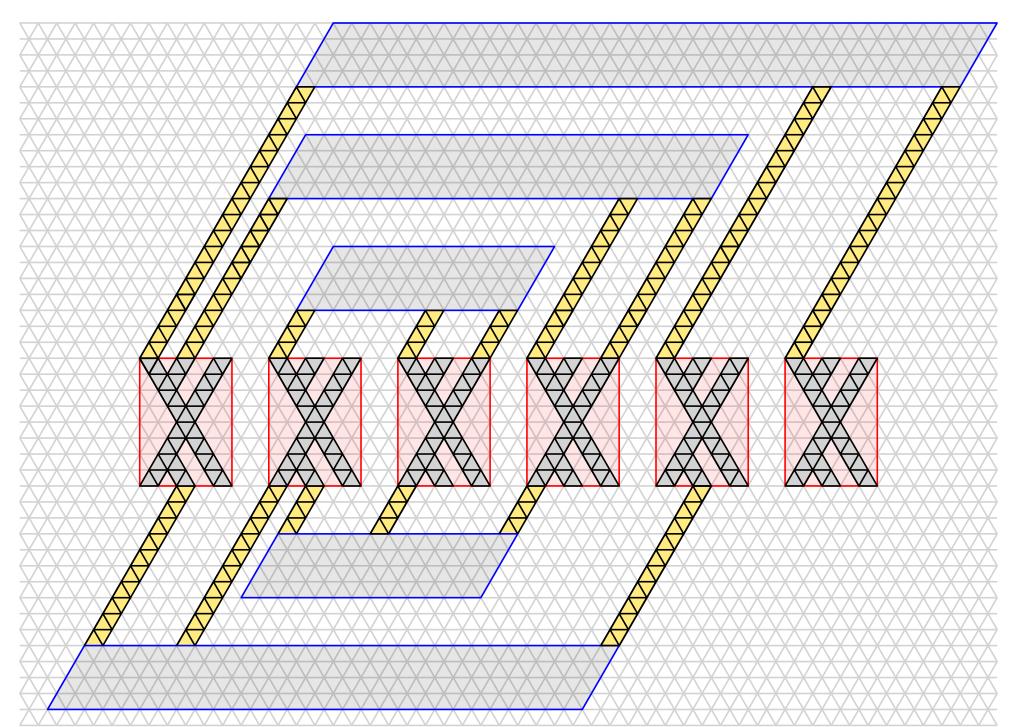


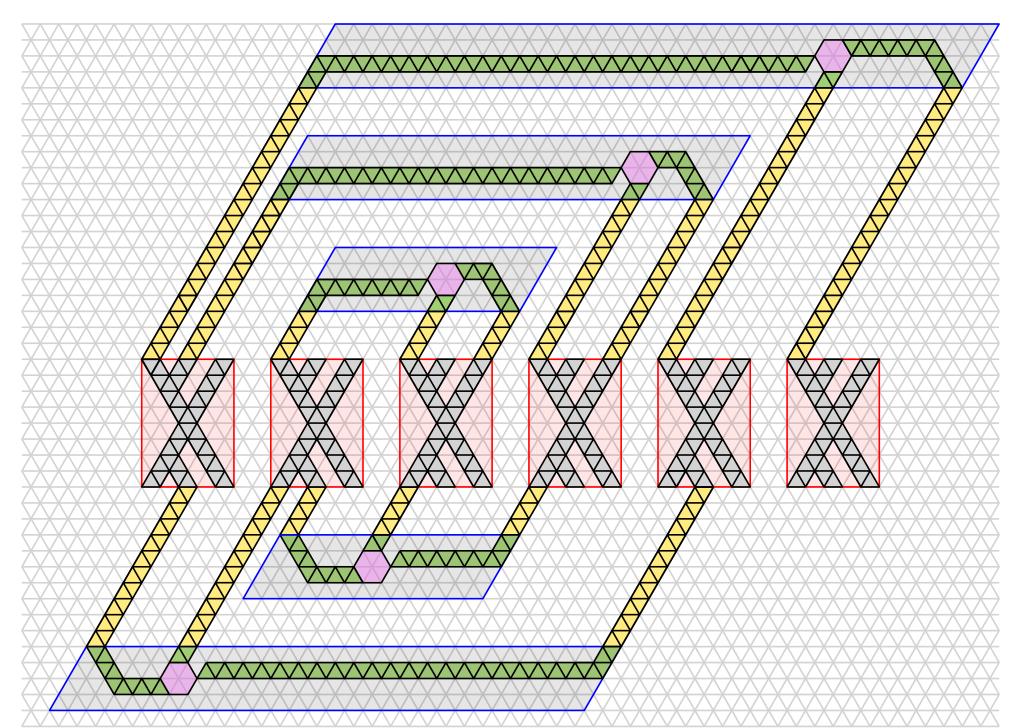


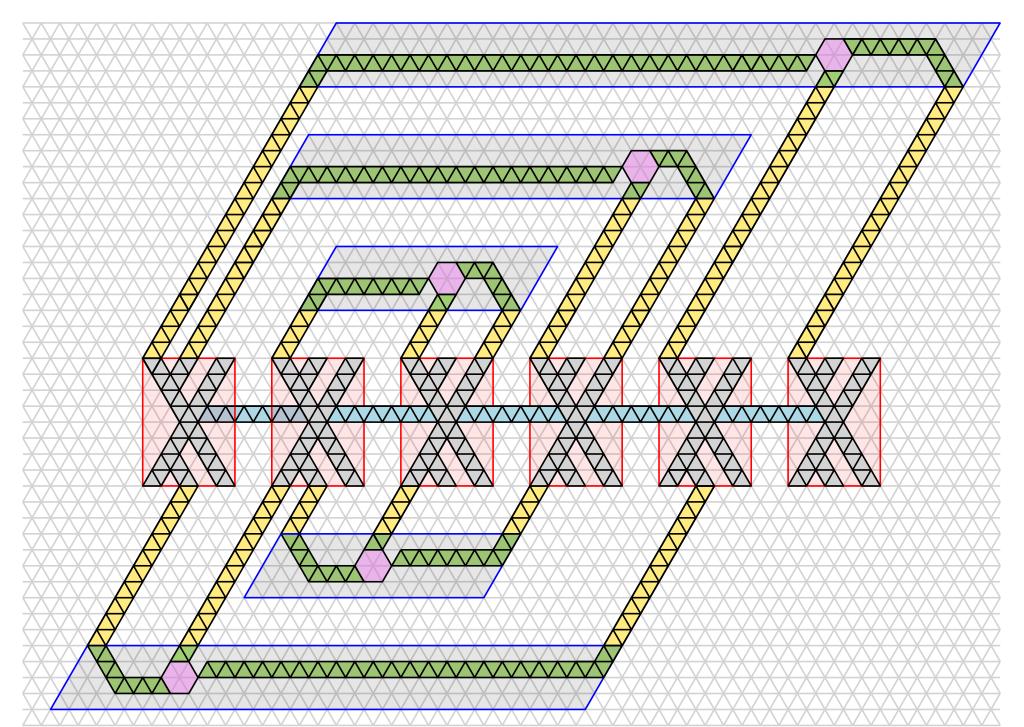


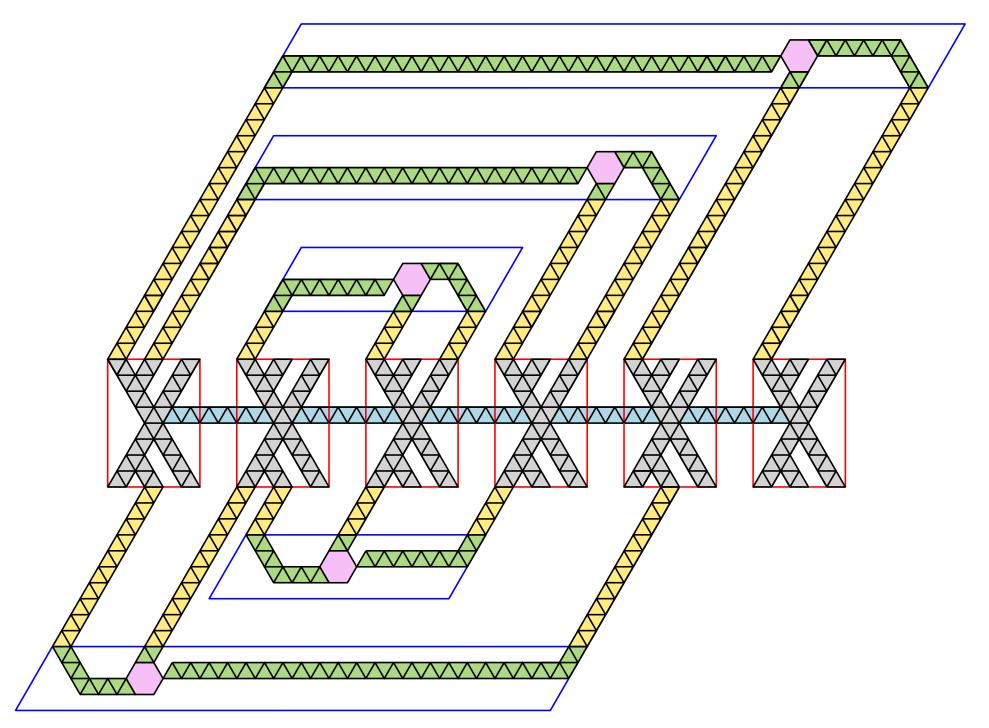




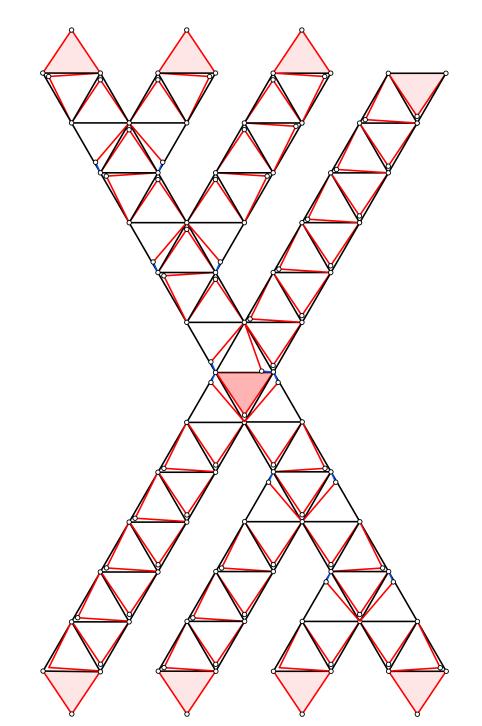






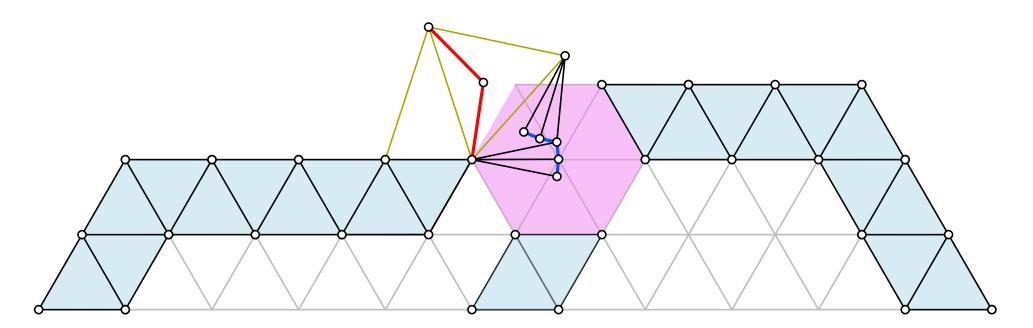


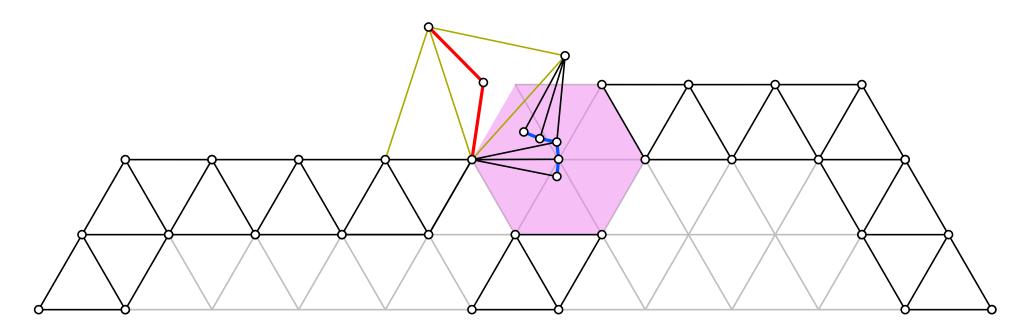
Variable gadget

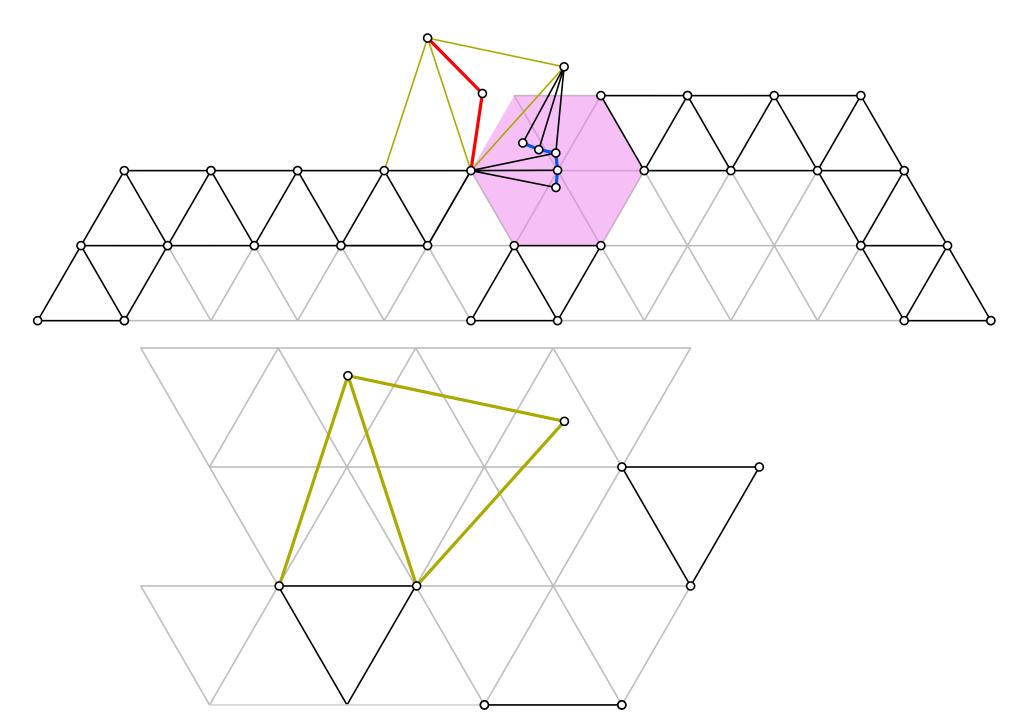


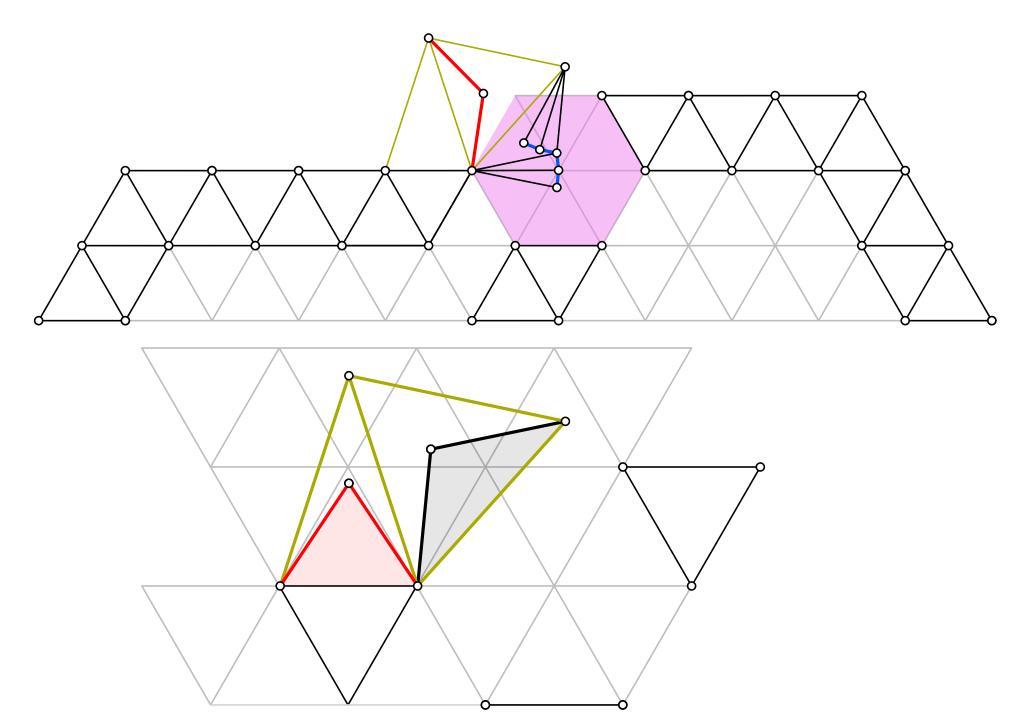
Variable gadget

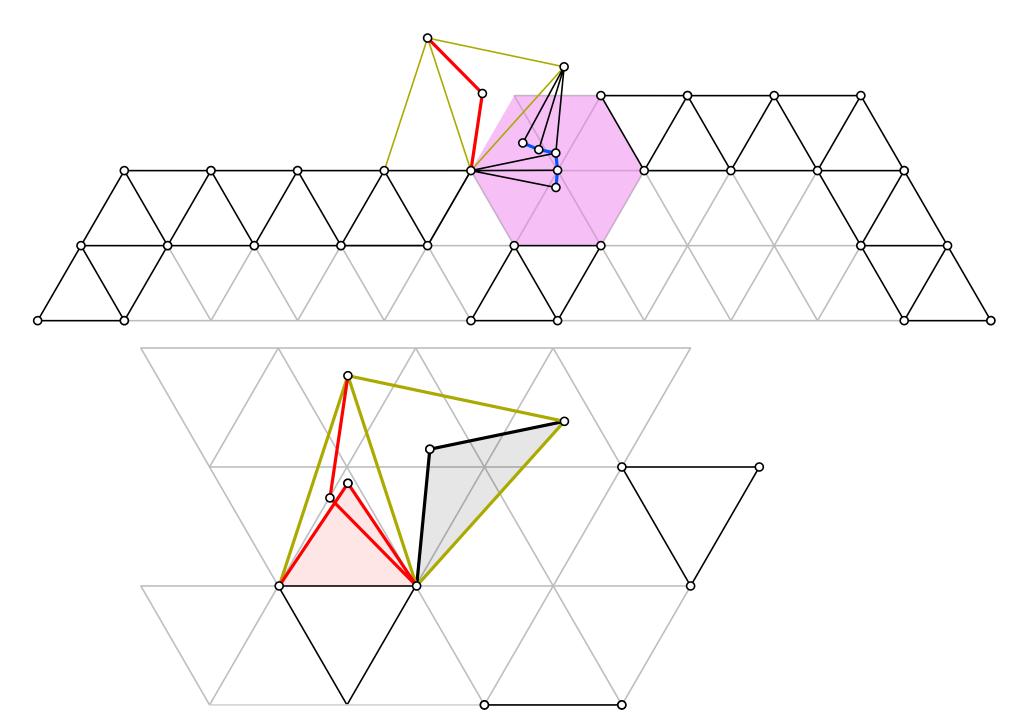


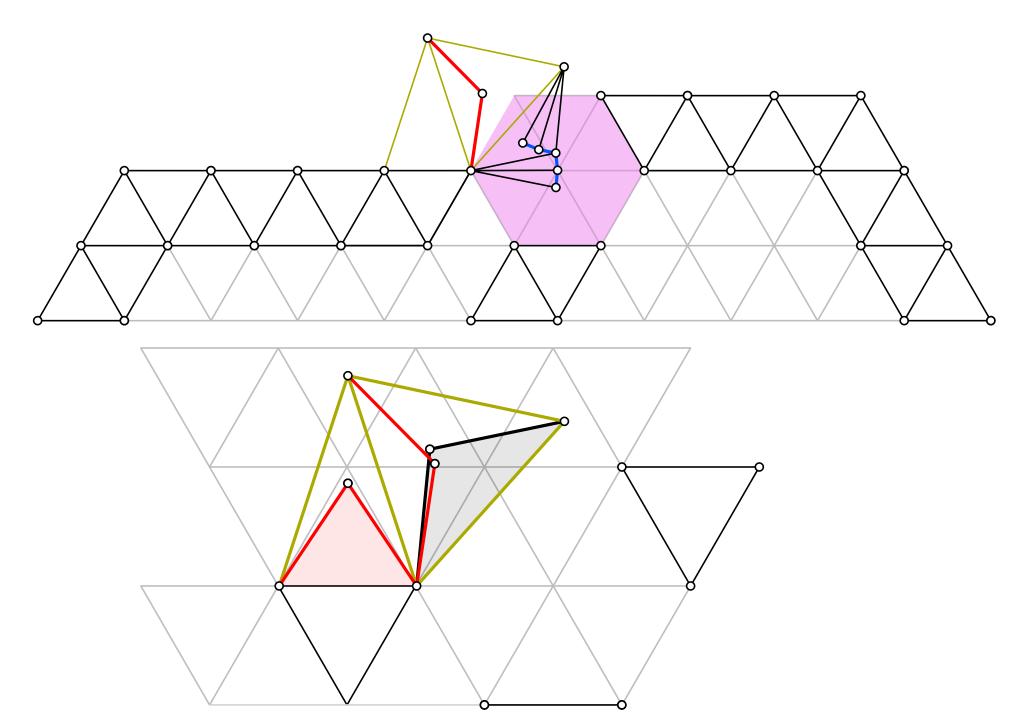


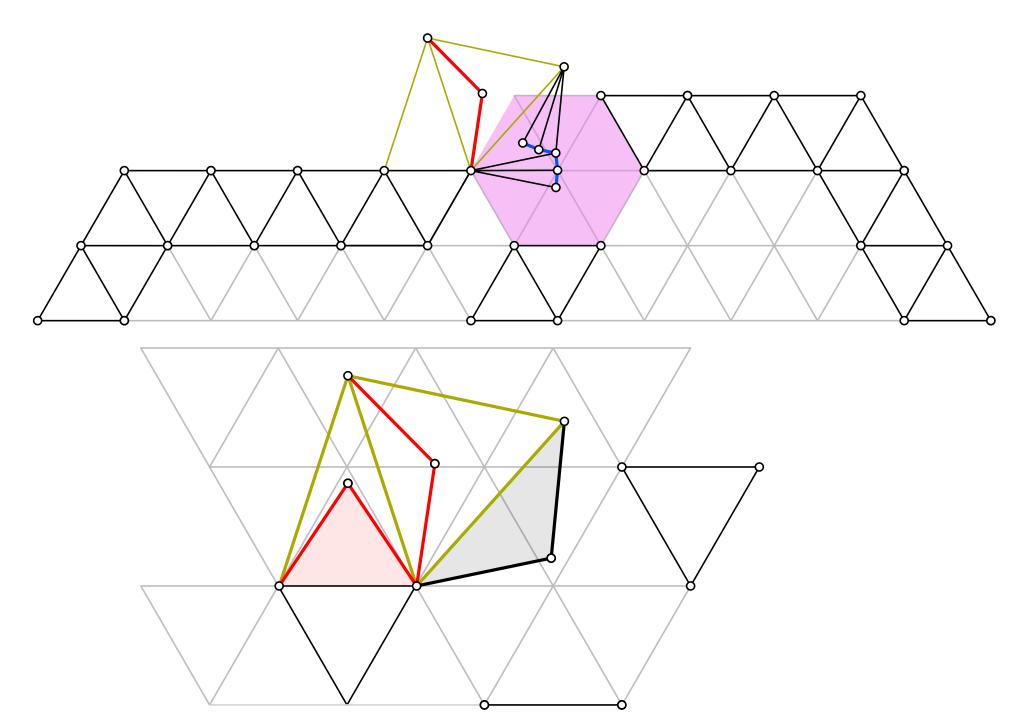


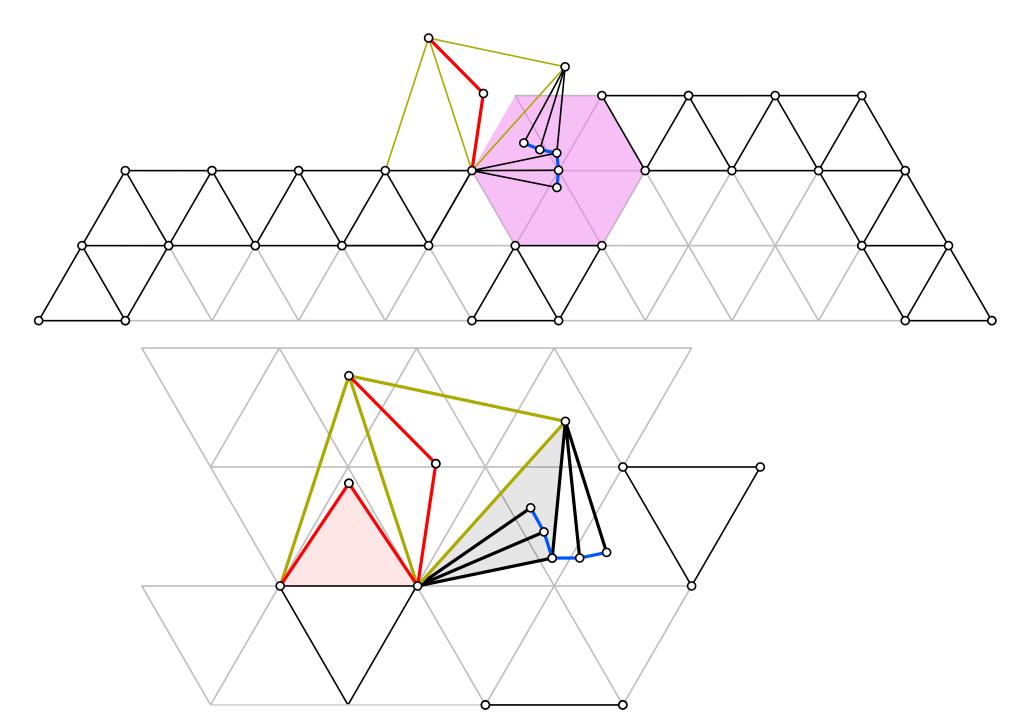


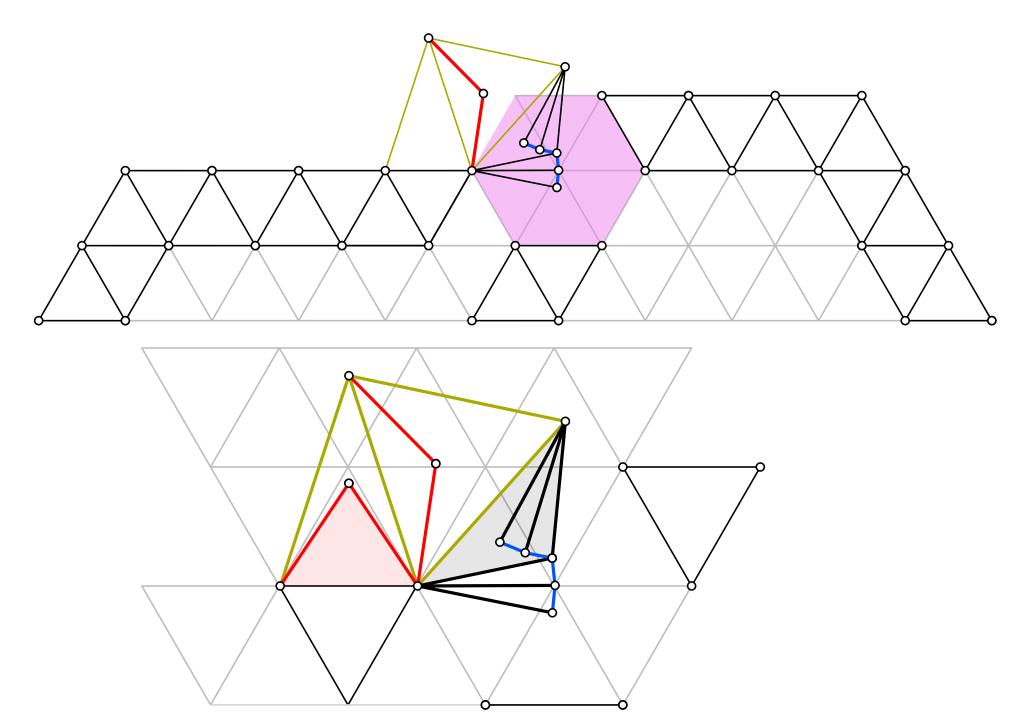


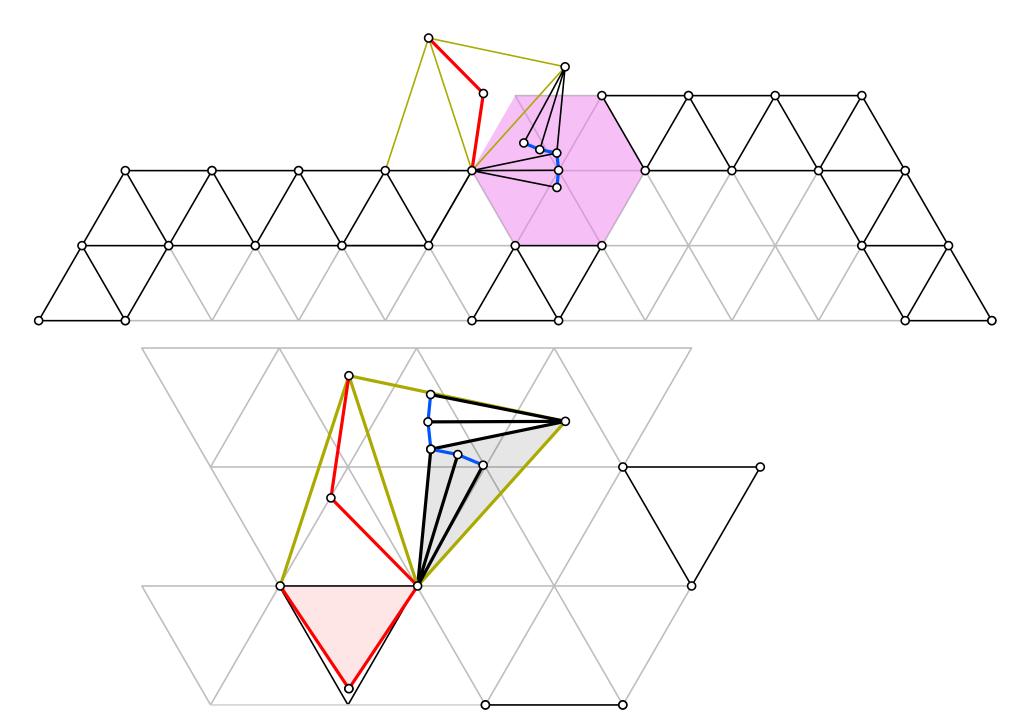


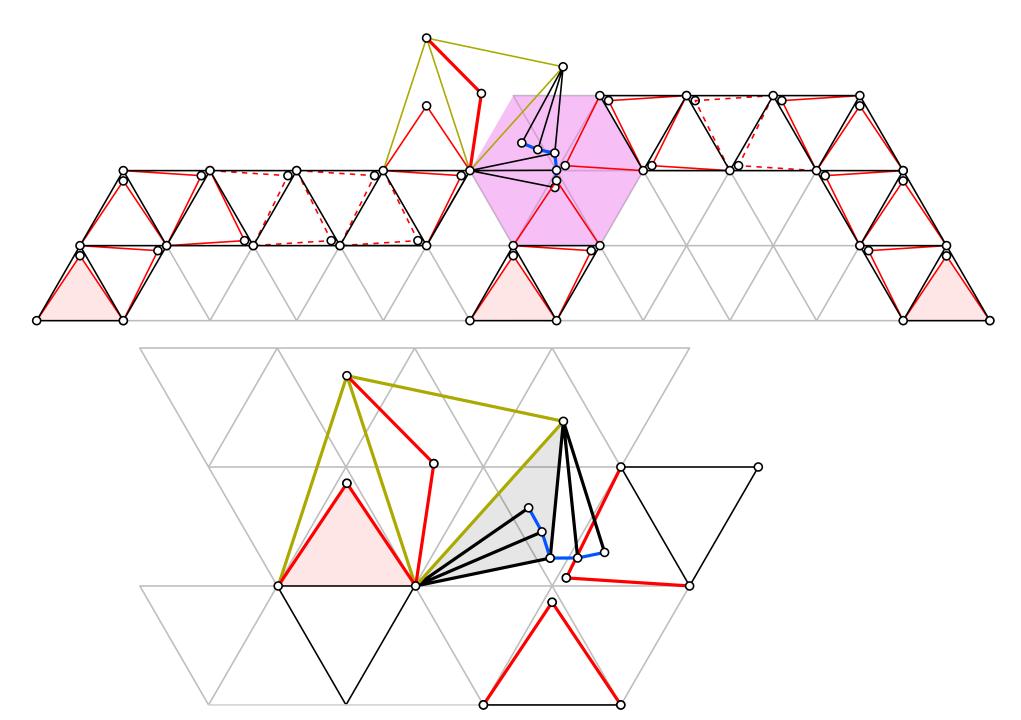


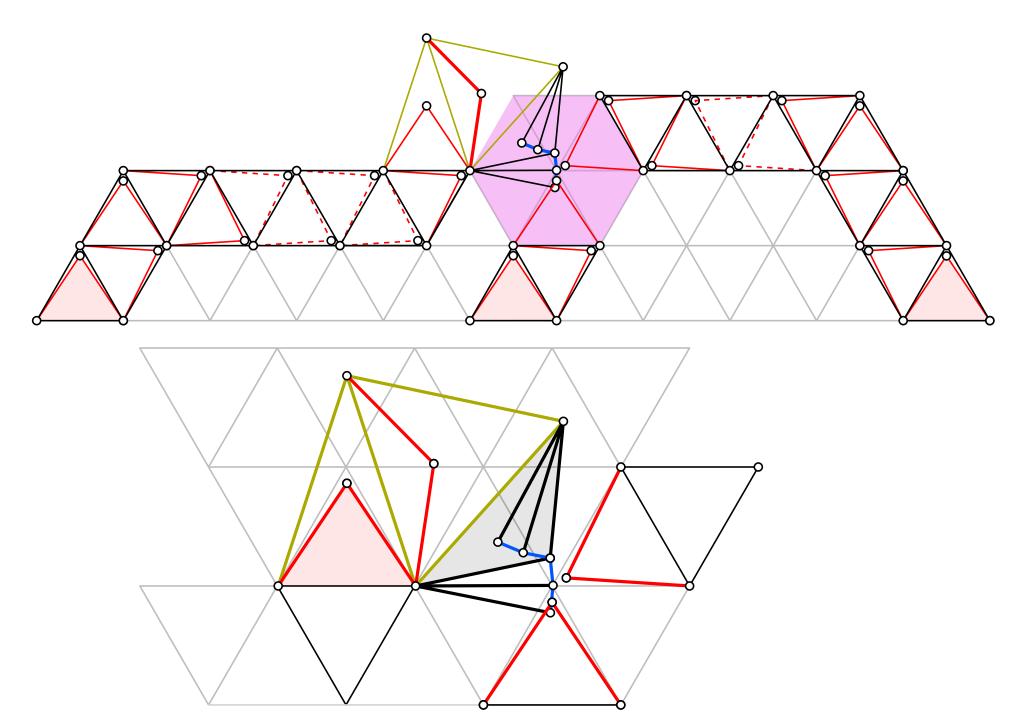


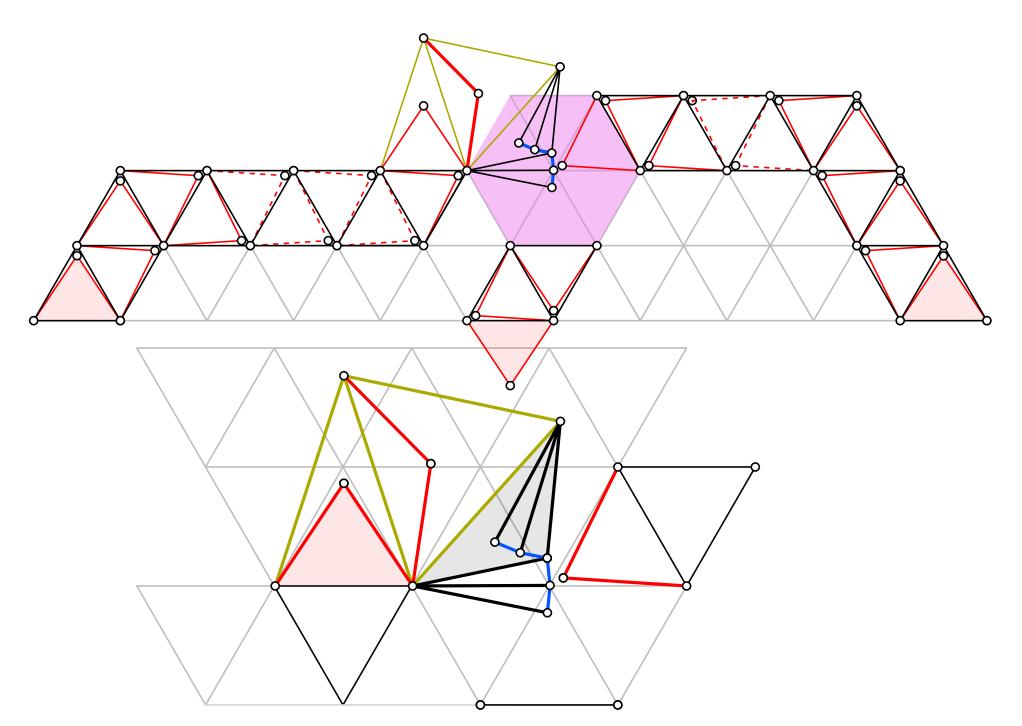






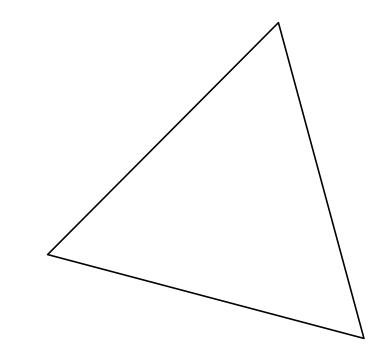


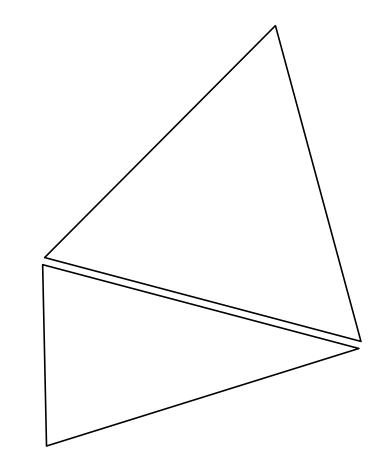


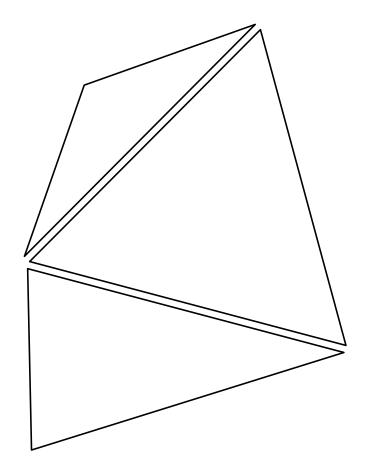


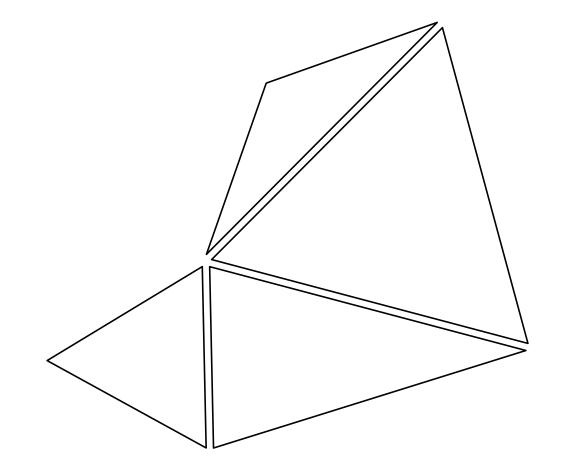
Theorem. The FEPR problem is NP-hard for weighted 2-trees, even for instances whose number of distinct edge lengths is 4.

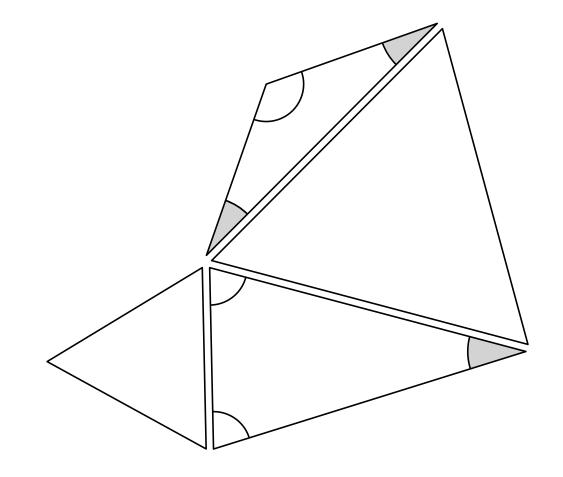
Two edge lenghts

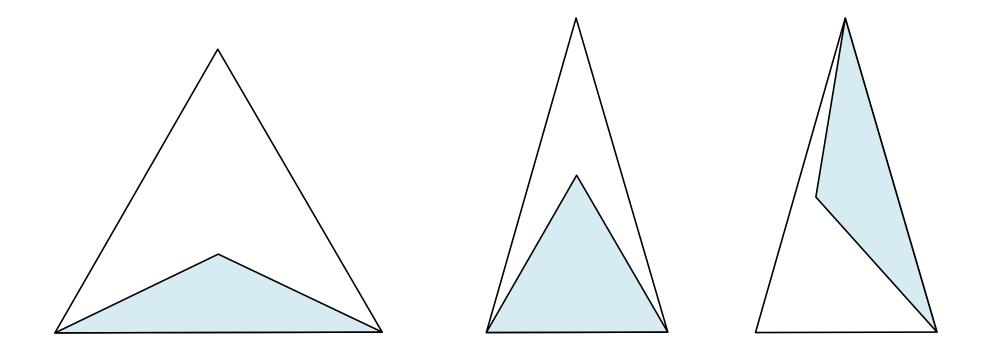


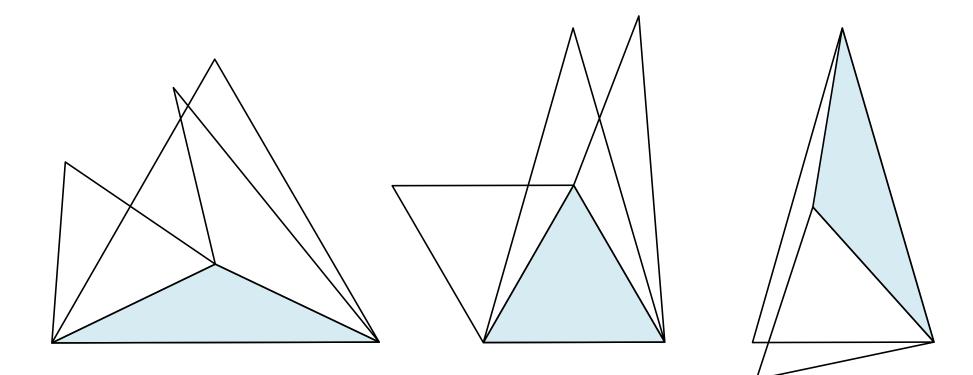


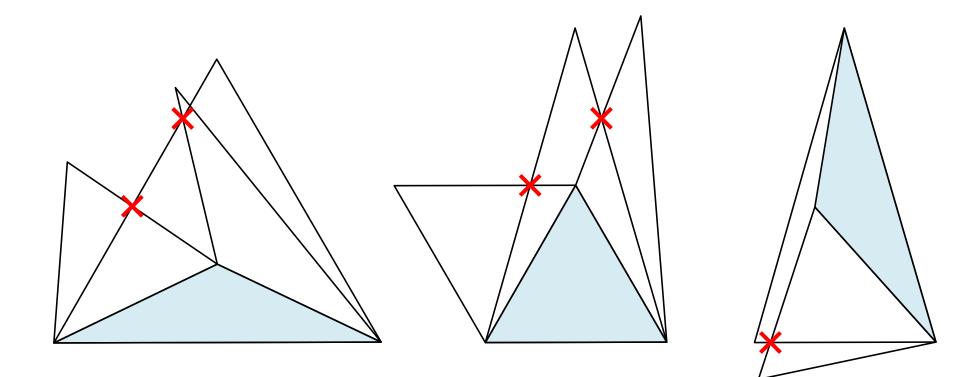


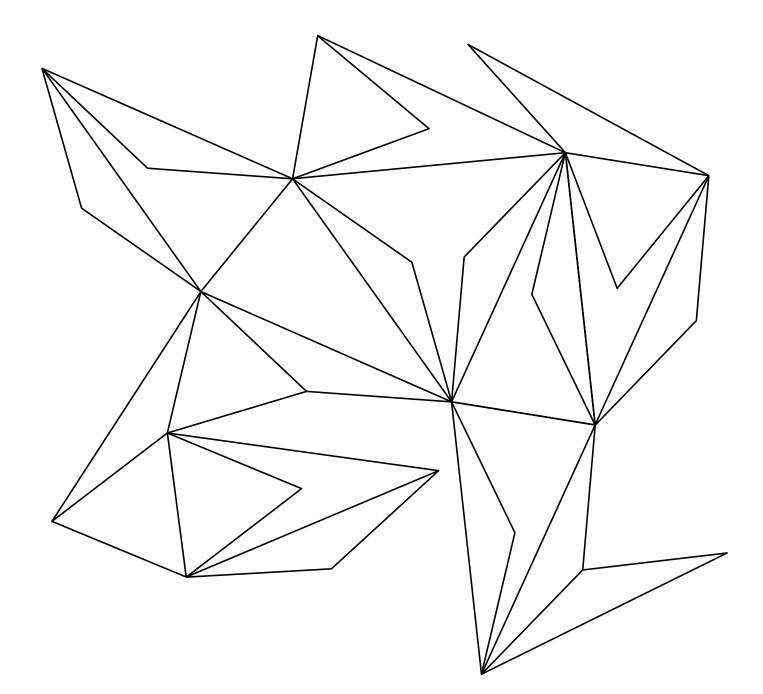


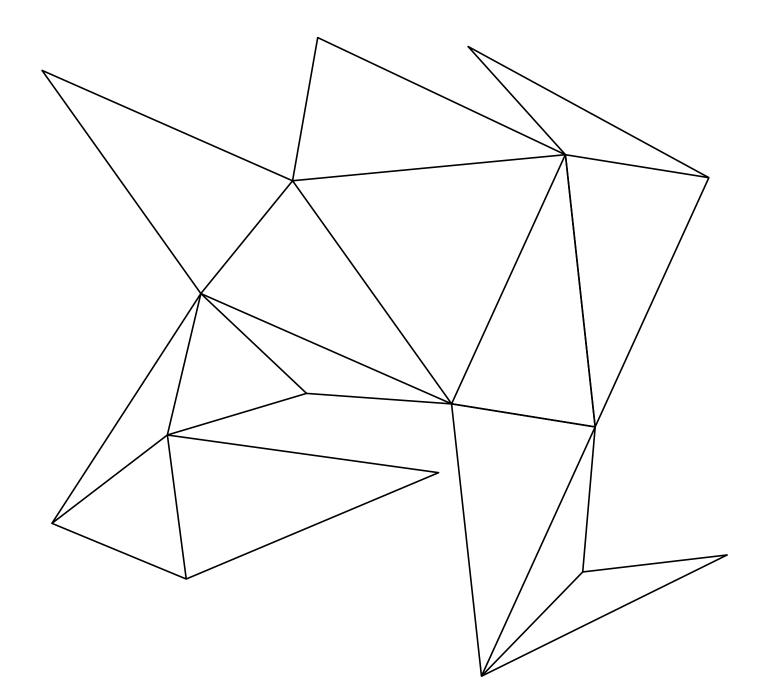


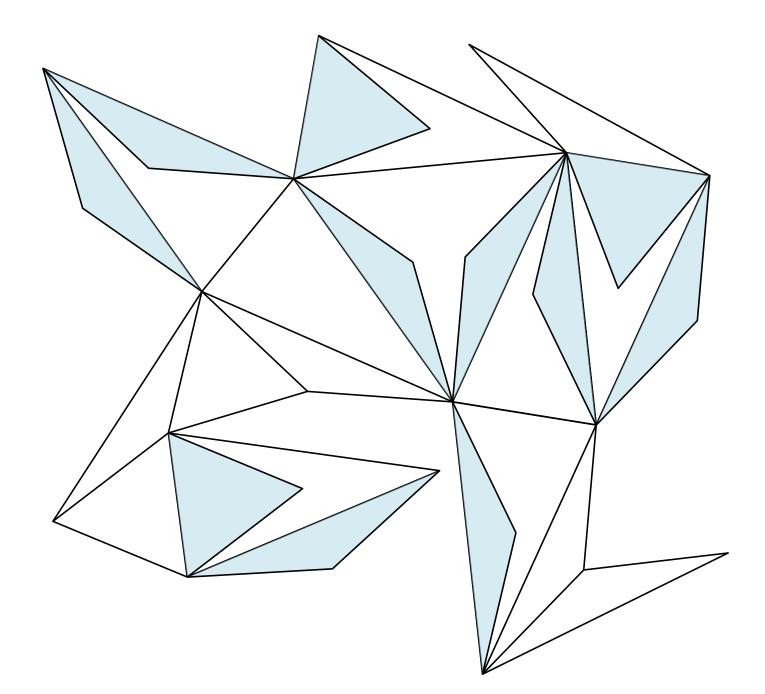




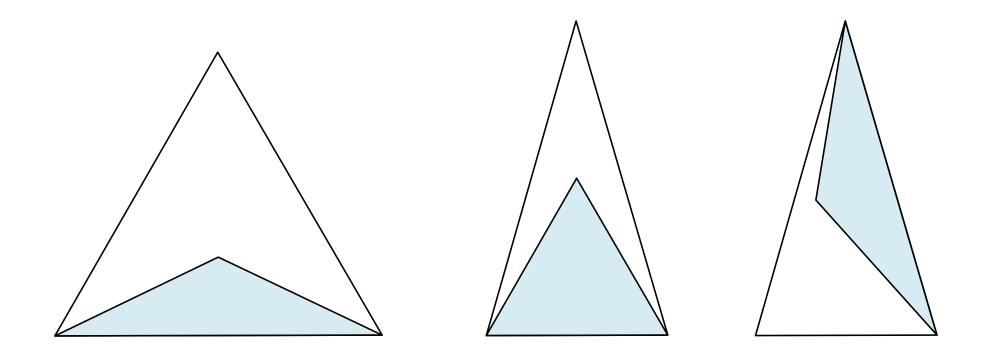


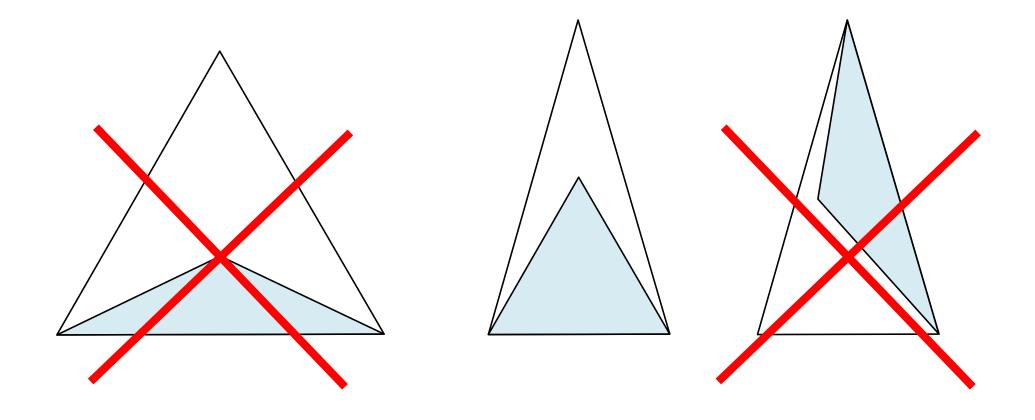


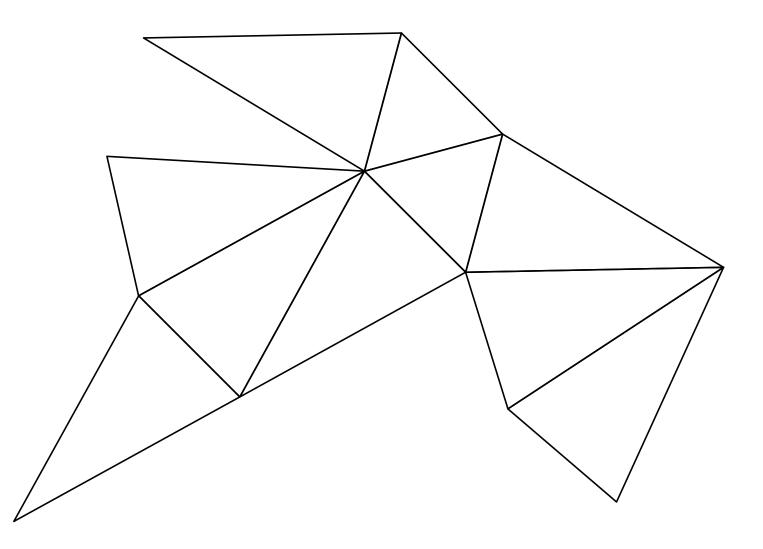


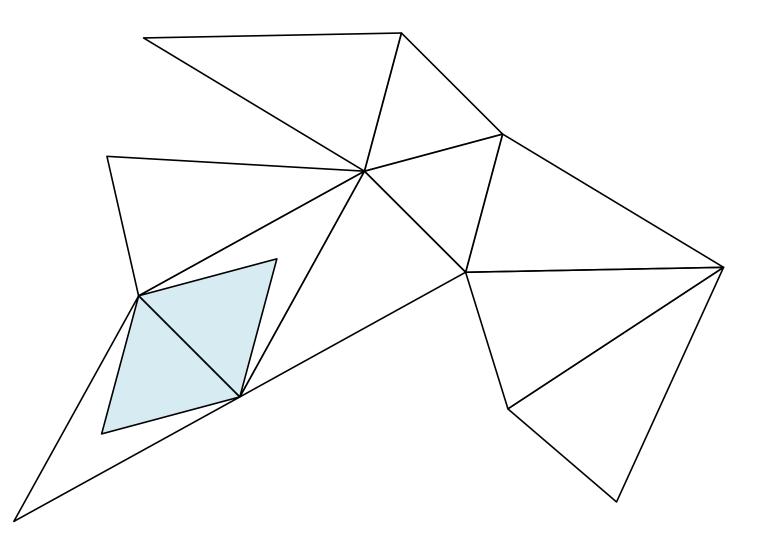


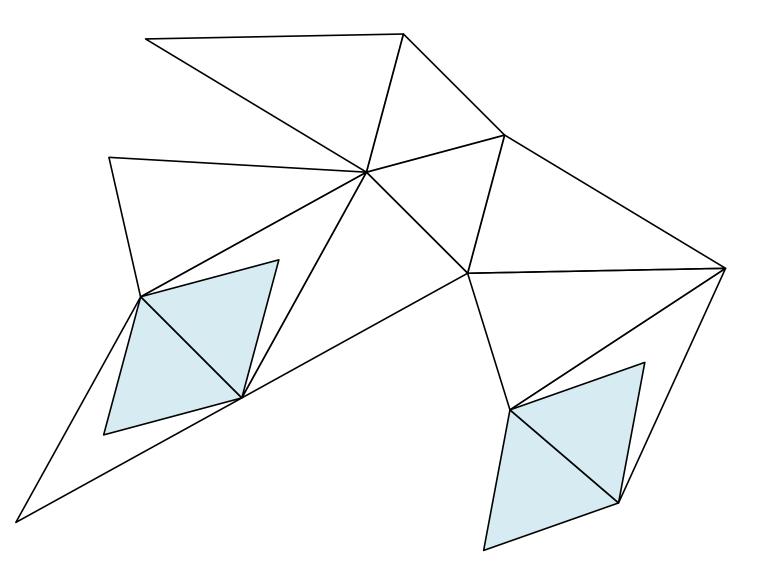


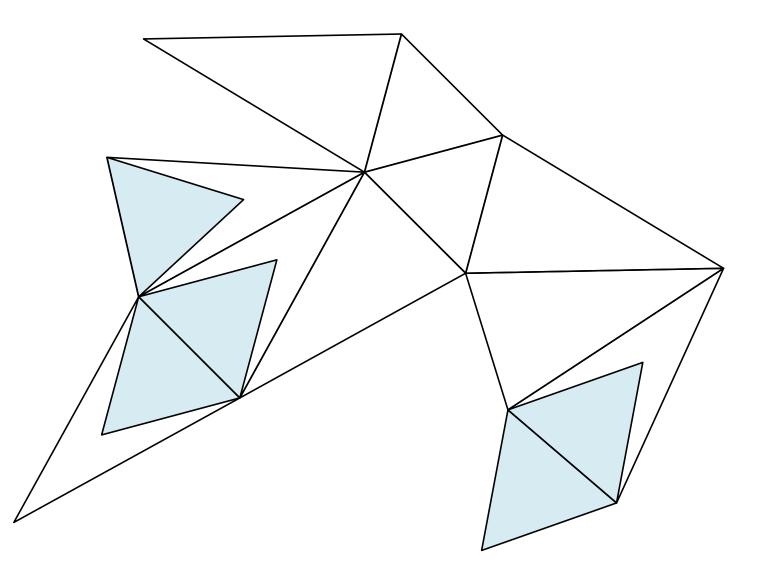


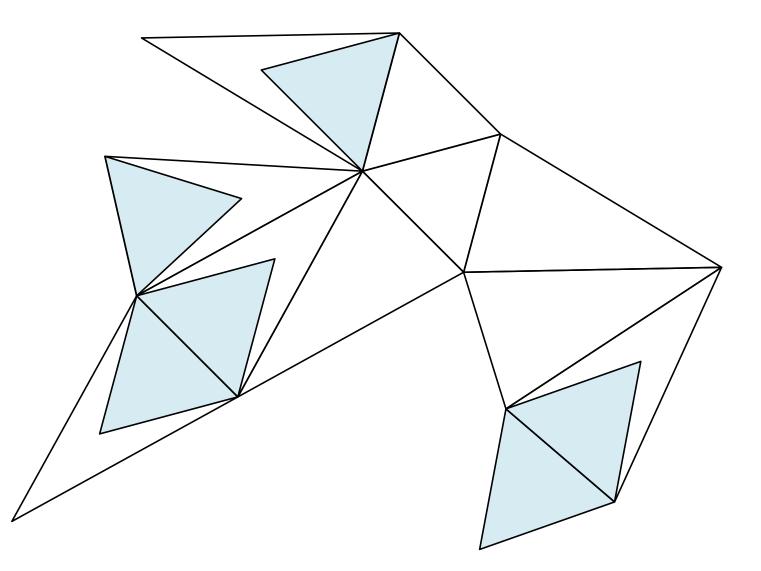


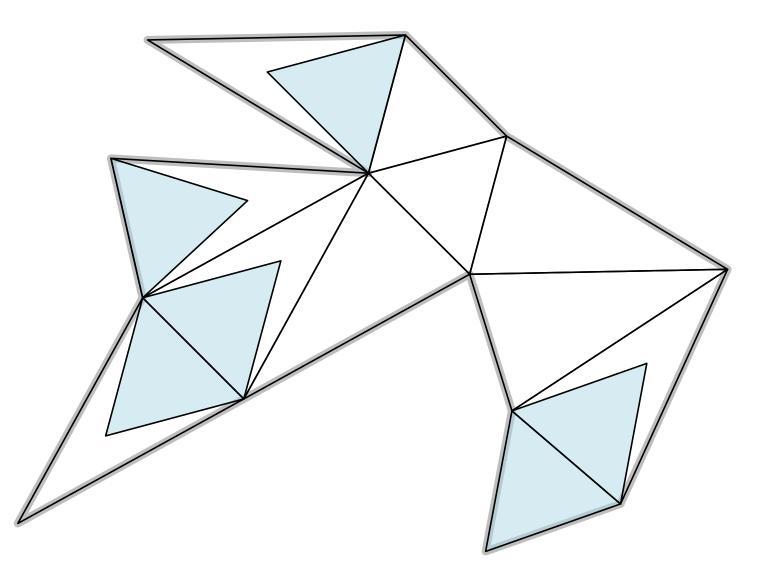


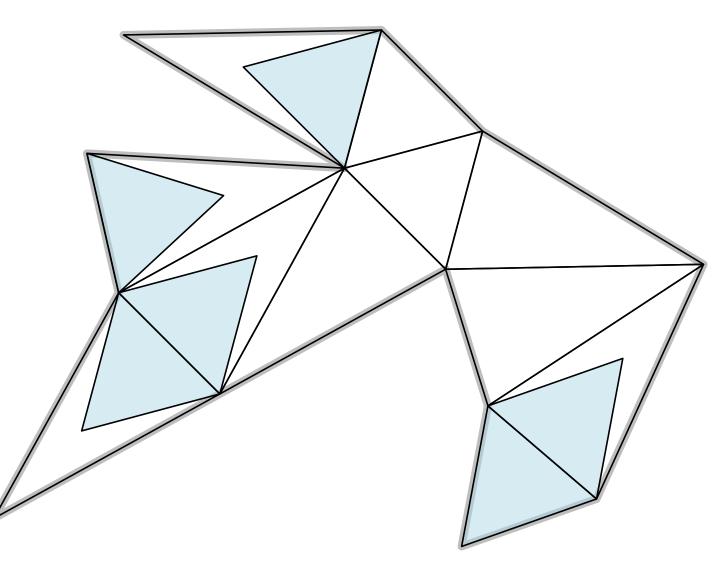






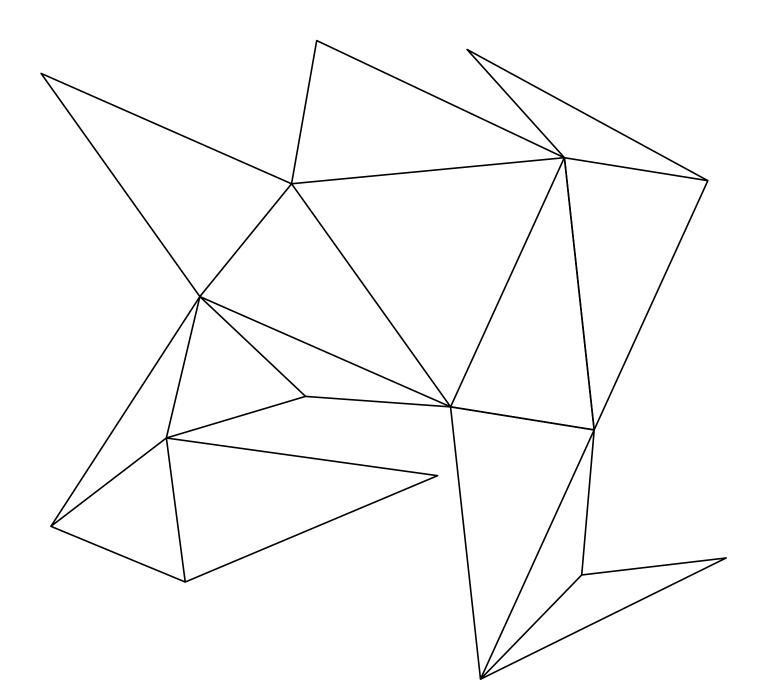




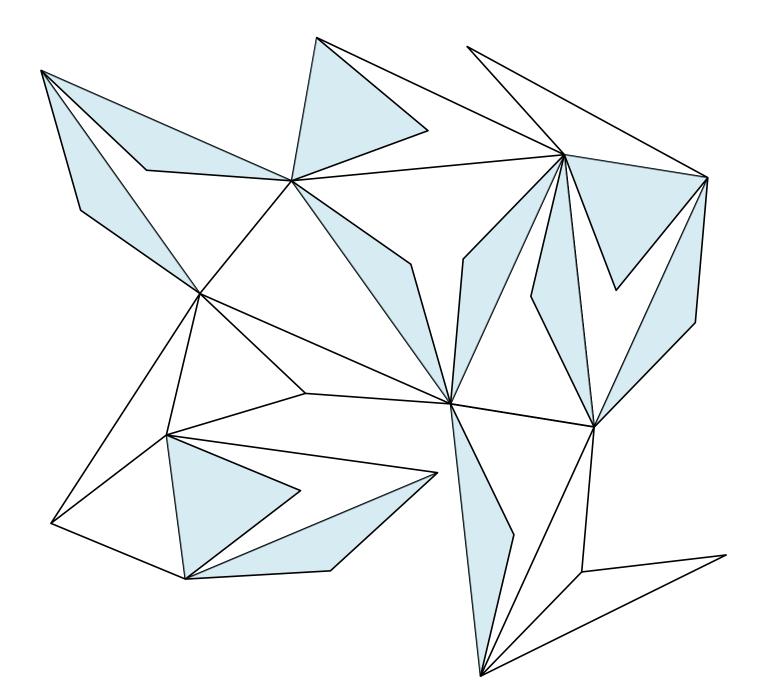


[Chazelle, 1991] Triangulating a simple polygon in linear time

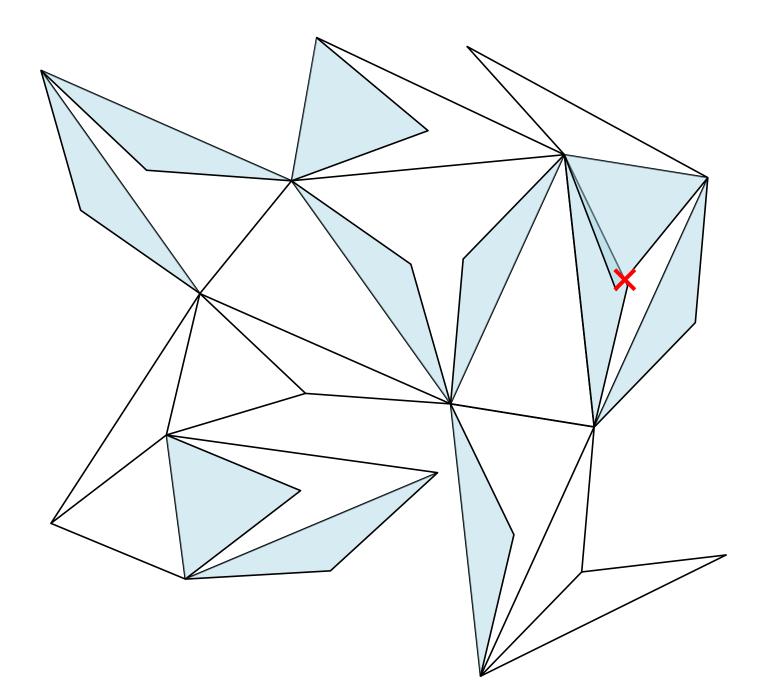
Ratio greater than two

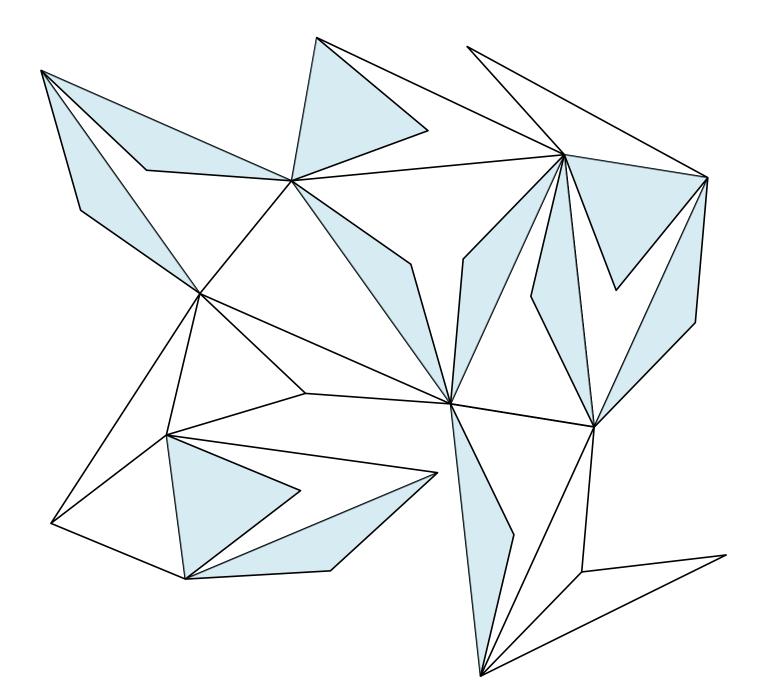


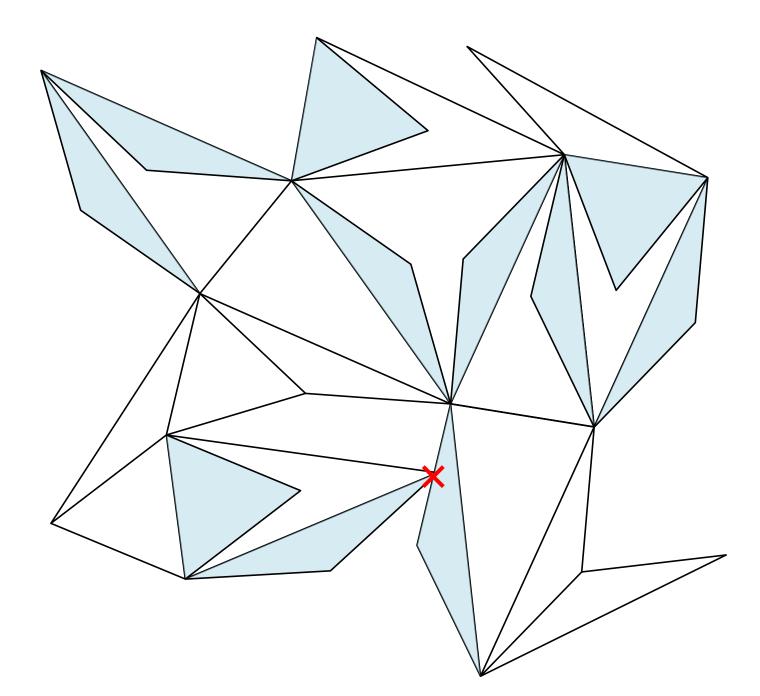
Ratio greater than two

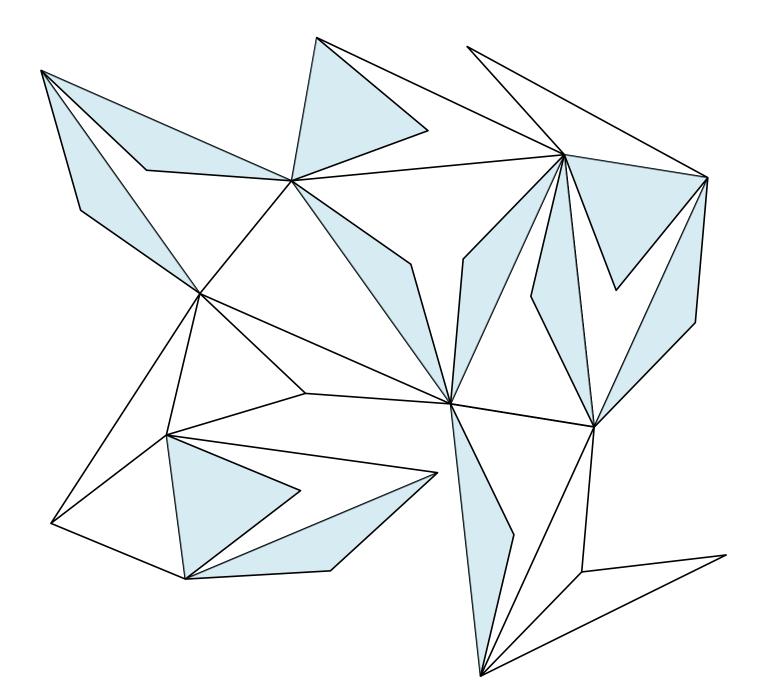


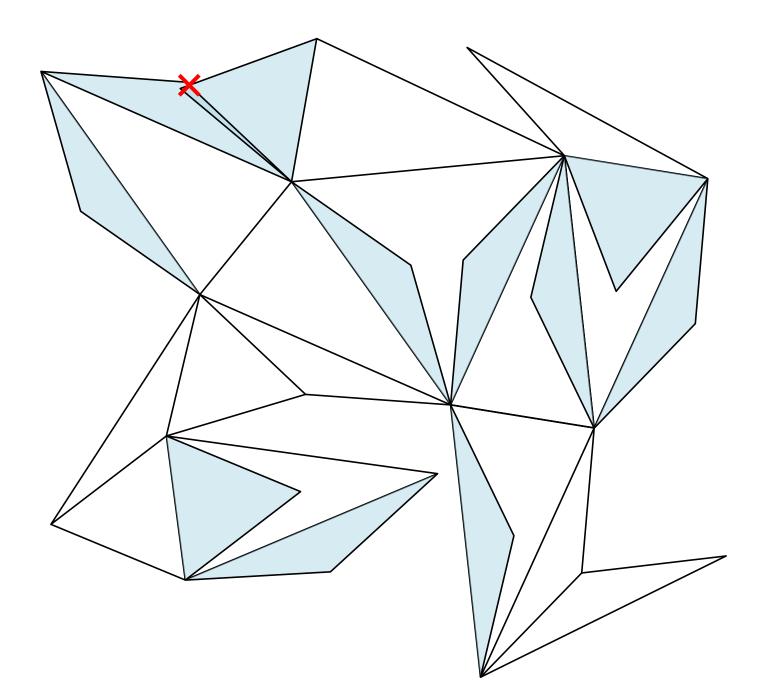
Ratio greater than two

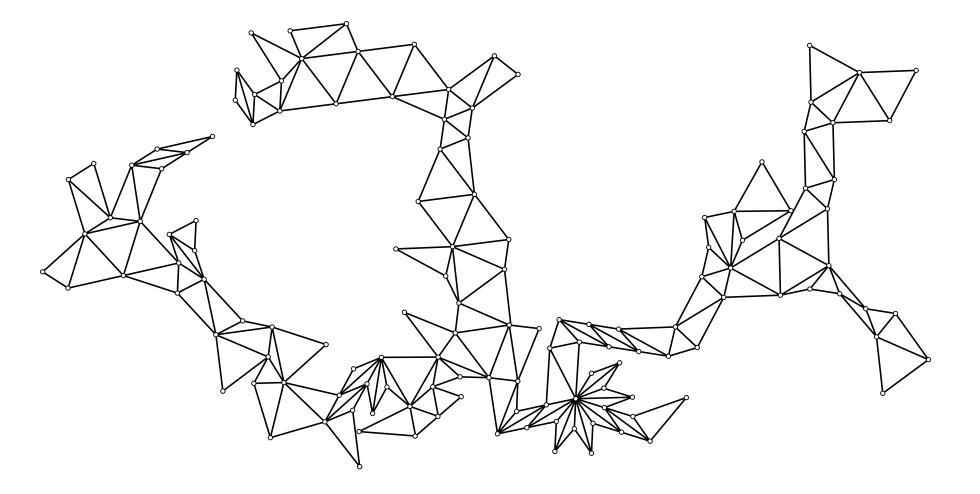


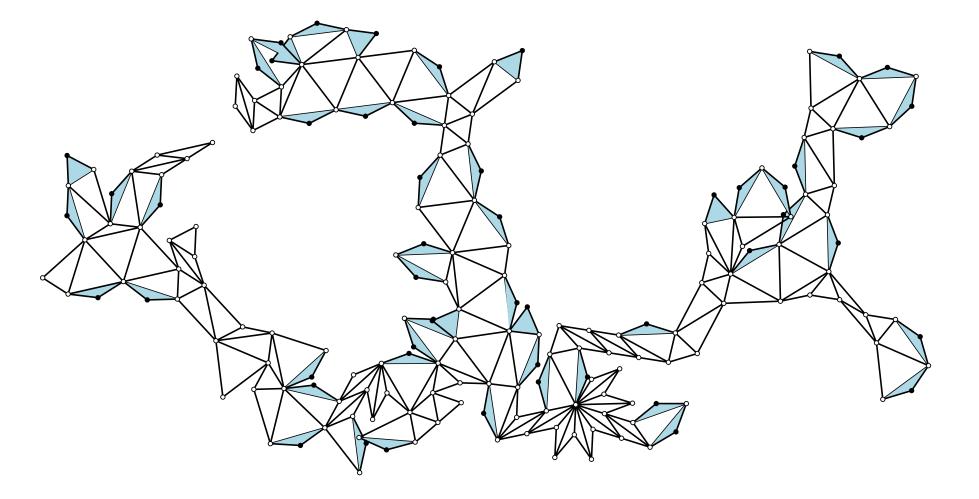


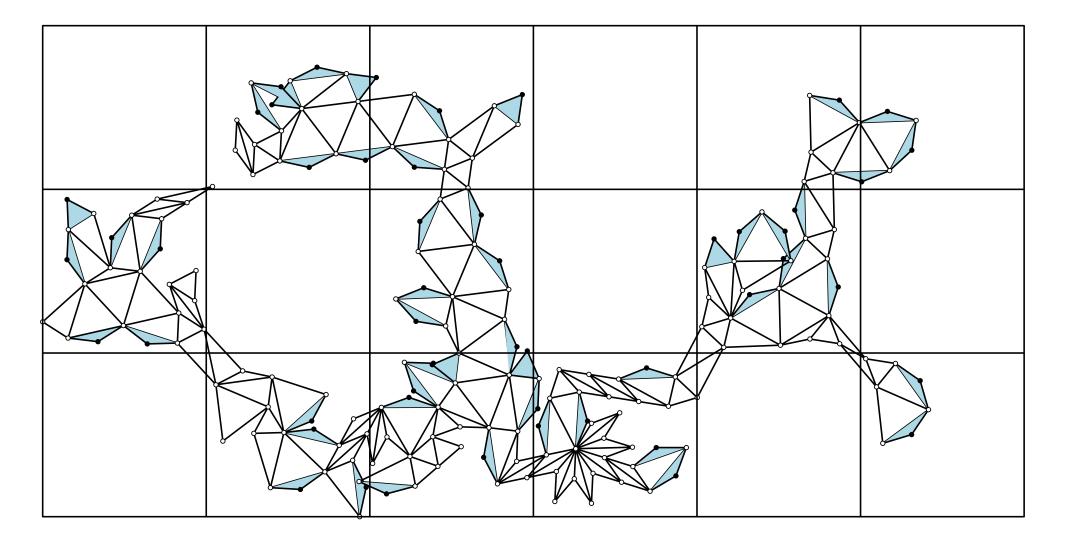


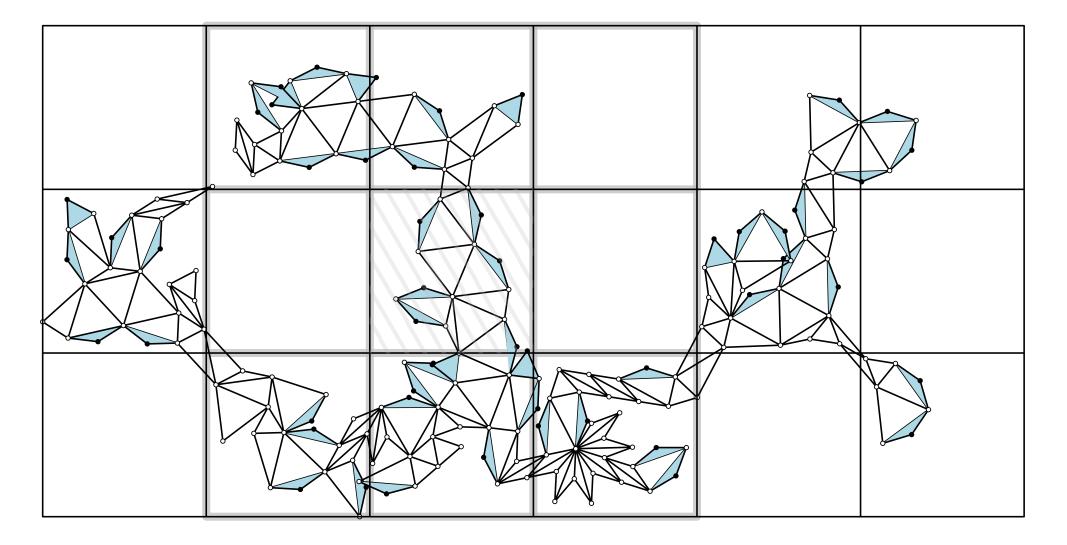


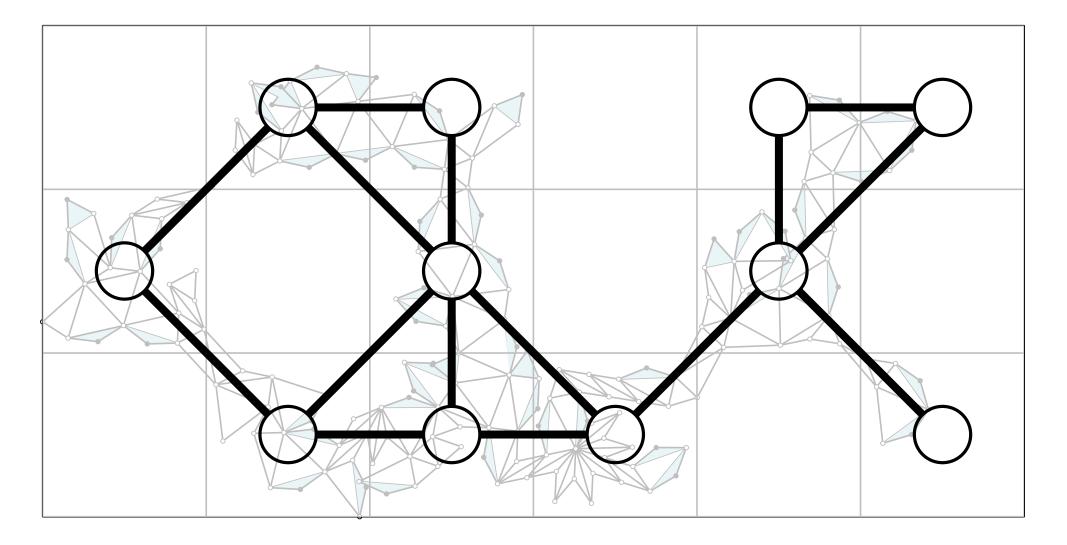


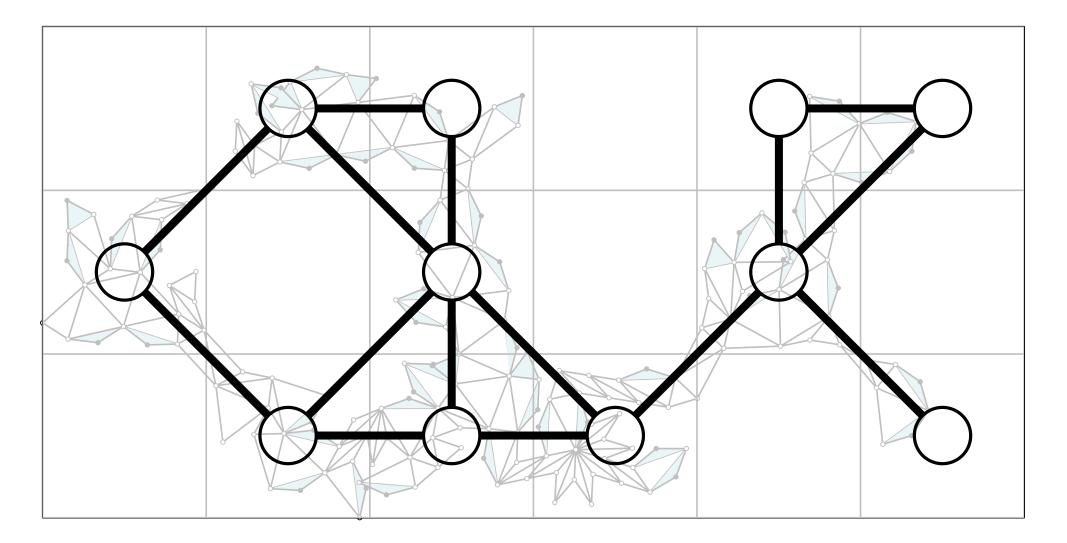












[Aspvall et al., 1979] We can test if a 2SAT is satisfiable in linear time. **Theorem.** Let $G = (V, E, \lambda)$ be an *n*-vertex weighted 2-tree, where $\lambda : E \to \{w_1, w_2\}$ with $w_1, w_2 \in \mathbb{R}^+$. There exists an O(n)-time algorithm that tests whether G admits a planar straight-line realization and, in the positive case, constructs such a realization.

• Fixed embedding:

- Fixed embedding:
 - Linear-time algorithm

- Fixed embedding:
 - Linear-time algorithm
- Variable embedding:

- Fixed embedding:
 - Linear-time algorithm
- Variable embedding:
 - NP-hard if the number of distinct lengths is at least 4

- Fixed embedding:
 - Linear-time algorithm
- Variable embedding:
 - NP-hard if the number of distinct lengths is at least 4
 - $\bullet\,$ Linear-time algorithm if the number of distinct lengths is 1 or 2

- Fixed embedding:
 - Linear-time algorithm
- Variable embedding:
 - NP-hard if the number of distinct lengths is at least 4
 - $\bullet\,$ Linear-time algorithm if the number of distinct lengths is $1 \, \, {\rm or} \, \, 2$
 - Polinomial-time algorithm for 2-trees whose longest path has bounded length

- Fixed embedding:
 - Linear-time algorithm
- Variable embedding:
 - NP-hard if the number of distinct lengths is at least 4
 - $\bullet\,$ Linear-time algorithm if the number of distinct lengths is 1 or 2
 - Polinomial-time algorithm for 2-trees whose longest path has bounded length
 - Linear-time algorithm for outerpaths

- Fixed embedding:
 - Linear-time algorithm
- Variable embedding:
 - NP-hard if the number of distinct lengths is at least 4
 - $\bullet\,$ Linear-time algorithm if the number of distinct lengths is 1 or 2
 - Polinomial-time algorithm for 2-trees whose longest path has bounded length
 - Linear-time algorithm for outerpaths
 - Cubic-time algorithm for outerpillars

- Fixed embedding:
 - Linear-time algorithm
- Variable embedding:
- NP-hard if the number of distinct lengths is at least 4
 - Linear-time algorithm if the number of distinct lengths is $1 \mbox{ or } 2$
 - Polinomial-time algorithm for 2-trees whose longest path has bounded length
 - Linear-time algorithm for outerpaths
 - Cubic-time algorithm for outerpillars

• What is the complexity of the problem for weighted graphs with three prescribed distinct lengths?

- What is the complexity of the problem for weighted graphs with three prescribed distinct lengths?
- Solve the problem for general maximal outerplanar graphs.

- What is the complexity of the problem for weighted graphs with three prescribed distinct lengths?
- Solve the problem for general maximal outerplanar graphs.
- Is there an FPT algorithm parametrized by the size of the longest path?

Thanks!